Morphological degradation models and their use in document image restoration

Qigong Zheng, T. Kanungo
{"title":"Morphological degradation models and their use in document image restoration","authors":"Qigong Zheng, T. Kanungo","doi":"10.1109/ICIP.2001.958986","DOIUrl":null,"url":null,"abstract":"Document images undergo various degradation processes. Numerous models of these degradation processes have been proposed in the literature. In this paper we propose a model-based restoration algorithm. The restoration algorithm first estimates the parameters of a degradation model and then uses the estimated parameters to construct a lookup table for restoring the degraded image. The estimated degradation model is used to estimate the probability of an ideal binary pattern, given the noisy observed pattern. This probability is estimated by degrading noise-free document images and then computing the frequency of corresponding noise-free and noisy pattern pairs. This conditional probability is then used to construct a lookup table to restore noisy images. The impact of the restoration process is then quantified by computing the decrease in OCR word and character error rate. We find that given the estimated degradation model parameter values, the restoration algorithm decreases the character error rate by 16.1% and the word error rate by 7.35%. In some categories of degradation (e.g. model parameters that give rise to broken characters) there is a 41.5% reduction in character error rate and 20.4% reduction in word error rate.","PeriodicalId":291827,"journal":{"name":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2001.958986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

Document images undergo various degradation processes. Numerous models of these degradation processes have been proposed in the literature. In this paper we propose a model-based restoration algorithm. The restoration algorithm first estimates the parameters of a degradation model and then uses the estimated parameters to construct a lookup table for restoring the degraded image. The estimated degradation model is used to estimate the probability of an ideal binary pattern, given the noisy observed pattern. This probability is estimated by degrading noise-free document images and then computing the frequency of corresponding noise-free and noisy pattern pairs. This conditional probability is then used to construct a lookup table to restore noisy images. The impact of the restoration process is then quantified by computing the decrease in OCR word and character error rate. We find that given the estimated degradation model parameter values, the restoration algorithm decreases the character error rate by 16.1% and the word error rate by 7.35%. In some categories of degradation (e.g. model parameters that give rise to broken characters) there is a 41.5% reduction in character error rate and 20.4% reduction in word error rate.
形态退化模型及其在文件图像恢复中的应用
文档图像经历了不同的退化过程。这些降解过程的许多模型已经在文献中提出。本文提出了一种基于模型的复原算法。该算法首先估计退化模型的参数,然后利用估计的参数构造查找表来恢复退化图像。估计的退化模型被用来估计一个理想的二值模式的概率,给定的噪声观测模式。该概率是通过降低无噪声文档图像,然后计算相应的无噪声和有噪声模式对的频率来估计的。然后使用这个条件概率构造一个查找表来恢复有噪声的图像。然后通过计算OCR单词和字符错误率的降低来量化恢复过程的影响。我们发现,给定估计的退化模型参数值,恢复算法将字符错误率降低了16.1%,单词错误率降低了7.35%。在某些退化类别中(例如,导致断字的模型参数),字符错误率降低了41.5%,单词错误率降低了20.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信