Motor imagery classification using feature relevance analysis: An Emotiv-based BCI system

J. Hurtado-Rincón, S. Rojas-Jaramillo, Y. Ricardo-Cespedes, A. Álvarez-Meza, G. Castellanos-Domínguez
{"title":"Motor imagery classification using feature relevance analysis: An Emotiv-based BCI system","authors":"J. Hurtado-Rincón, S. Rojas-Jaramillo, Y. Ricardo-Cespedes, A. Álvarez-Meza, G. Castellanos-Domínguez","doi":"10.1109/STSIVA.2014.7010165","DOIUrl":null,"url":null,"abstract":"Brain Computer Interfaces (BCI) have been emerged as an alternative to support automatic systems able to interpret brain functions, commonly, by analyzing electroencephalography (EEG) recordings. In this work, a time-series discrimination methodology, called Motor Imagery Discrimination by Relevance Analysis (MIDRA), is presented to support the development of BCI from EEG data. Particularly, a Motor Imagery (MI) paradigm is studied, i.e., imagination of left-right hand movements. In this sense, a feature relevance analysis strategy is presented to select representing characteristics using a variability criterion. Besides, short-time parameters are estimated from EEG data by considering both time and time-frequency representations to deal with non-stationary dynamics. MIDRA is assessed on two different BCI databases, a well-known MI data and an Emotiv-based dataset. Attained results showed that MIDRA enhances the BCI system performance in comparison with benchmark methods by suitable ranking the input feature set. Moreover, applying MIDRA in a BCI based on the Emotiv device is a straightforward alternative for dealing with MI paradigms.","PeriodicalId":114554,"journal":{"name":"2014 XIX Symposium on Image, Signal Processing and Artificial Vision","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 XIX Symposium on Image, Signal Processing and Artificial Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2014.7010165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Brain Computer Interfaces (BCI) have been emerged as an alternative to support automatic systems able to interpret brain functions, commonly, by analyzing electroencephalography (EEG) recordings. In this work, a time-series discrimination methodology, called Motor Imagery Discrimination by Relevance Analysis (MIDRA), is presented to support the development of BCI from EEG data. Particularly, a Motor Imagery (MI) paradigm is studied, i.e., imagination of left-right hand movements. In this sense, a feature relevance analysis strategy is presented to select representing characteristics using a variability criterion. Besides, short-time parameters are estimated from EEG data by considering both time and time-frequency representations to deal with non-stationary dynamics. MIDRA is assessed on two different BCI databases, a well-known MI data and an Emotiv-based dataset. Attained results showed that MIDRA enhances the BCI system performance in comparison with benchmark methods by suitable ranking the input feature set. Moreover, applying MIDRA in a BCI based on the Emotiv device is a straightforward alternative for dealing with MI paradigms.
基于特征关联分析的运动意象分类:一个基于emotivo的脑机接口系统
脑机接口(BCI)作为一种支持自动系统的替代方案,通常通过分析脑电图(EEG)记录来解释大脑功能。在这项工作中,提出了一种时间序列识别方法,称为运动意象识别相关分析(MIDRA),以支持从EEG数据中开发脑机接口。特别地,运动意象(MI)范式被研究,即,左手右手运动的想象。在这个意义上,提出了一种特征相关性分析策略,利用可变性准则选择具有代表性的特征。此外,结合时频表征和时频表征对脑电数据进行短时参数估计,以处理非平稳动态。MIDRA在两个不同的BCI数据库上进行评估,一个是众所周知的MI数据,另一个是基于emotiv的数据集。结果表明,与基准方法相比,MIDRA通过对输入特征集进行适当的排序,提高了BCI系统的性能。此外,在基于Emotiv设备的BCI中应用MIDRA是处理MI范例的直接替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信