GPU-Accelerated Nick Local Image Thresholding Algorithm

M. Najafi, Anirudh Murali, D. Lilja, J. Sartori
{"title":"GPU-Accelerated Nick Local Image Thresholding Algorithm","authors":"M. Najafi, Anirudh Murali, D. Lilja, J. Sartori","doi":"10.1109/ICPADS.2015.78","DOIUrl":null,"url":null,"abstract":"Binarization plays an important role in document image processing, particularly in degraded document images. Among all local adaptive image thresholding algorithms, the Nick method has shown excellent binarization performance for degraded document images. However, local image thresholding algorithms, including the Nick method, are computationally intensive, requiring significant time to process input images. In this paper, we propose three CUDA GPU parallel implementations of the Nick local image thresholding algorithm for faster binarization of large images. Our experimental results show that the GPU-accelerated implementations of the Nick method can achieve up to 150x performance speedup on a GeForce GTX 480 compared to its optimized sequential implementation.","PeriodicalId":231517,"journal":{"name":"2015 IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS)","volume":"459 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS.2015.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Binarization plays an important role in document image processing, particularly in degraded document images. Among all local adaptive image thresholding algorithms, the Nick method has shown excellent binarization performance for degraded document images. However, local image thresholding algorithms, including the Nick method, are computationally intensive, requiring significant time to process input images. In this paper, we propose three CUDA GPU parallel implementations of the Nick local image thresholding algorithm for faster binarization of large images. Our experimental results show that the GPU-accelerated implementations of the Nick method can achieve up to 150x performance speedup on a GeForce GTX 480 compared to its optimized sequential implementation.
gpu加速Nick局部图像阈值算法
二值化在文档图像处理中起着重要的作用,特别是在退化的文档图像中。在所有的局部自适应图像阈值分割算法中,Nick方法对退化的文档图像表现出了优异的二值化性能。然而,局部图像阈值分割算法,包括Nick方法,是计算密集型的,需要大量的时间来处理输入图像。在本文中,我们提出了三种CUDA GPU并行实现尼克局部图像阈值算法,以更快地对大图像进行二值化。我们的实验结果表明,与优化后的顺序实现相比,Nick方法的gpu加速实现在GeForce GTX 480上可以实现高达150倍的性能加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信