{"title":"Synchrophasor Measurements-based Events Detection Using Deep Learning","authors":"H. Ren, Z. Hou, Heng Wang, P. Etingov","doi":"10.1145/3396851.3403513","DOIUrl":null,"url":null,"abstract":"Deep learning algorithms have been developed for phasor measurement units (PMUs) analysis aiming at providing grid operators to observe and react to significant real-time changes in the grid associated with multiple factors (e.g., power generation and load variations, different type of faults, and equipment malfunction), or for offline post-event system diagnostics. In this study, a Long Short-Term Memory (LSTM)-based deep neural network (DNN) is adopted and evaluated to identify the most appropriate model configurations for event detection and longer-term anomalous pattern extraction. The proposed DNN model shows the potential on long-term predictions with the ability to capture nonlinear and nonstationary mixture complex patterns in PMU datasets. Real-world PMU in the WECC system were used for model development and validation.","PeriodicalId":442966,"journal":{"name":"Proceedings of the Eleventh ACM International Conference on Future Energy Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh ACM International Conference on Future Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3396851.3403513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning algorithms have been developed for phasor measurement units (PMUs) analysis aiming at providing grid operators to observe and react to significant real-time changes in the grid associated with multiple factors (e.g., power generation and load variations, different type of faults, and equipment malfunction), or for offline post-event system diagnostics. In this study, a Long Short-Term Memory (LSTM)-based deep neural network (DNN) is adopted and evaluated to identify the most appropriate model configurations for event detection and longer-term anomalous pattern extraction. The proposed DNN model shows the potential on long-term predictions with the ability to capture nonlinear and nonstationary mixture complex patterns in PMU datasets. Real-world PMU in the WECC system were used for model development and validation.