Nonlinear system identification using constellation based multiple model adaptive estimators

J. C. Martins, J. Caeiro, L. Sousa
{"title":"Nonlinear system identification using constellation based multiple model adaptive estimators","authors":"J. C. Martins, J. Caeiro, L. Sousa","doi":"10.5281/ZENODO.44203","DOIUrl":null,"url":null,"abstract":"This paper describes the application of the constellation based multiple model adaptive estimation (CBMMAE) algorithm to the identification and parameter estimation of nonlinear systems. The method was successfully applied to the identification of linear systems both stationary and nonstationary, being able to fine tune its parameters. The method starts by establishing a minimum set of models that are geometrically arranged in the space spanned by the unknown parameters, and adopts a strategy to adaptively update the constellation models in the parameter space in order to find the model resembling the system under identification. By downscaling the models parameters the constellation is shrunk, reducing the uncertainty of the parameters estimation. Simulations are presented to exhibit the application of the framework and the performance of the algorithm to the identification and parameters estimation of nonlinear systems.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.44203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes the application of the constellation based multiple model adaptive estimation (CBMMAE) algorithm to the identification and parameter estimation of nonlinear systems. The method was successfully applied to the identification of linear systems both stationary and nonstationary, being able to fine tune its parameters. The method starts by establishing a minimum set of models that are geometrically arranged in the space spanned by the unknown parameters, and adopts a strategy to adaptively update the constellation models in the parameter space in order to find the model resembling the system under identification. By downscaling the models parameters the constellation is shrunk, reducing the uncertainty of the parameters estimation. Simulations are presented to exhibit the application of the framework and the performance of the algorithm to the identification and parameters estimation of nonlinear systems.
基于星座的多模型自适应估计的非线性系统辨识
本文介绍了基于星座的多模型自适应估计(CBMMAE)算法在非线性系统辨识和参数估计中的应用。该方法成功地应用于平稳和非平稳线性系统的辨识,并能对其参数进行微调。该方法首先在未知参数所跨越的空间中建立几何排列的最小模型集,并采用自适应更新参数空间中的星座模型的策略,以找到与待识别系统相似的模型。通过对模型参数的降尺度,缩小了星座,降低了参数估计的不确定性。通过仿真展示了该框架在非线性系统辨识和参数估计中的应用以及算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信