{"title":"Graph sums in the remodeling\n conjecture","authors":"Bohan Fang, Zhengyu Zong","doi":"10.1090/pspum/100/01767","DOIUrl":null,"url":null,"abstract":"The BKMP Remodeling Conjecture \\cite{Ma,BKMP09,BKMP10} predicts all genus open-closed Gromov-Witten invariants for a toric Calabi-Yau $3$-orbifold by Eynard-Orantin's topological recursion \\cite{EO07} on its mirror curve. The proof of the Remodeling Conjecture by the authors \\cite{FLZ1,FLZ3} relies on comparing two Feynman-type graph sums in both A and B-models. In this paper, we will survey these graph sum formulae and discuss their roles in the proof of the conjecture.","PeriodicalId":384712,"journal":{"name":"Proceedings of Symposia in Pure\n Mathematics","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Symposia in Pure\n Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/pspum/100/01767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The BKMP Remodeling Conjecture \cite{Ma,BKMP09,BKMP10} predicts all genus open-closed Gromov-Witten invariants for a toric Calabi-Yau $3$-orbifold by Eynard-Orantin's topological recursion \cite{EO07} on its mirror curve. The proof of the Remodeling Conjecture by the authors \cite{FLZ1,FLZ3} relies on comparing two Feynman-type graph sums in both A and B-models. In this paper, we will survey these graph sum formulae and discuss their roles in the proof of the conjecture.