Paraphrastic recurrent neural network language models

Xunying Liu, Xie Chen, M. Gales, P. Woodland
{"title":"Paraphrastic recurrent neural network language models","authors":"Xunying Liu, Xie Chen, M. Gales, P. Woodland","doi":"10.1109/ICASSP.2015.7179004","DOIUrl":null,"url":null,"abstract":"Recurrent neural network language models (RNNLM) have become an increasingly popular choice for state-of-the-art speech recognition systems. Linguistic factors in??uencing the realization of surface word sequences, for example, expressive richness, are only implicitly learned by RNNLMs. Observed sentences and their associated alternative paraphrases representing the same meaning are not explicitly related during training. In order to improve context coverage and generalization, paraphrastic RNNLMs are investigated in this paper. Multiple paraphrase variants were automatically generated and used in paraphrastic RNNLM training. Using a paraphrastic multi-level RNNLM modelling both word and phrase sequences, signi??cant error rate reductions of 0.6% absolute and perplexity reduction of 10% relative were obtained over the baseline RNNLM on a large vocabulary conversational telephone speech recognition system trained on 2000 hours of audio and 545 million words of texts. The overall improvement over the baseline n-gram LM was increased from 8.4% to 11.6% relative.","PeriodicalId":117666,"journal":{"name":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2015.7179004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Recurrent neural network language models (RNNLM) have become an increasingly popular choice for state-of-the-art speech recognition systems. Linguistic factors in??uencing the realization of surface word sequences, for example, expressive richness, are only implicitly learned by RNNLMs. Observed sentences and their associated alternative paraphrases representing the same meaning are not explicitly related during training. In order to improve context coverage and generalization, paraphrastic RNNLMs are investigated in this paper. Multiple paraphrase variants were automatically generated and used in paraphrastic RNNLM training. Using a paraphrastic multi-level RNNLM modelling both word and phrase sequences, signi??cant error rate reductions of 0.6% absolute and perplexity reduction of 10% relative were obtained over the baseline RNNLM on a large vocabulary conversational telephone speech recognition system trained on 2000 hours of audio and 545 million words of texts. The overall improvement over the baseline n-gram LM was increased from 8.4% to 11.6% relative.
释义递归神经网络语言模型
递归神经网络语言模型(RNNLM)已经成为最先进的语音识别系统中越来越受欢迎的选择。语言因素??使用表面词序列的实现,例如,表达丰富度,只能由rnnlm隐式学习。在训练过程中,观察到的句子及其相关的替代释义没有明确的关联。为了提高上下文覆盖和泛化能力,本文对释义式rnnlm进行了研究。自动生成多个释义变体并用于释义RNNLM训练。使用释义多级RNNLM对单词和短语序列建模,signi?在一个经过2000小时音频和5.45亿字文本训练的大词汇会话电话语音识别系统上,在基线RNNLM的基础上,错误率绝对降低了0.6%,困惑率相对降低了10%。相对于基线n-gram LM的总体改善从8.4%增加到11.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信