Parallel Data Cube Construction Based on an Extendible Multidimensional Array

Dong Jin, T. Tsuji
{"title":"Parallel Data Cube Construction Based on an Extendible Multidimensional Array","authors":"Dong Jin, T. Tsuji","doi":"10.1109/TrustCom.2011.155","DOIUrl":null,"url":null,"abstract":"The pre-computation of data cubes is critical for improving the response time of OLAP(On-Line Analytical Processing) systems. In order to meet the need for improved performance created by growing data sizes, parallel solutions for data cube construction are becoming increasingly important. This paper presents two parallel methods for data cube construction based on an extendible multidimensional array, which is dynamically extendible along any dimension without relocating any existing data. We have implemented and evaluated our core-based parallel data cube construction methods on shared-memory multiprocessors. Given the performance limit, the methods achieve close to linear speedup with load balance. Our experiments also indicate that our parallel methods can be more scalable on higher dimensional data cube construction.","PeriodicalId":289926,"journal":{"name":"2011IEEE 10th International Conference on Trust, Security and Privacy in Computing and Communications","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011IEEE 10th International Conference on Trust, Security and Privacy in Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TrustCom.2011.155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The pre-computation of data cubes is critical for improving the response time of OLAP(On-Line Analytical Processing) systems. In order to meet the need for improved performance created by growing data sizes, parallel solutions for data cube construction are becoming increasingly important. This paper presents two parallel methods for data cube construction based on an extendible multidimensional array, which is dynamically extendible along any dimension without relocating any existing data. We have implemented and evaluated our core-based parallel data cube construction methods on shared-memory multiprocessors. Given the performance limit, the methods achieve close to linear speedup with load balance. Our experiments also indicate that our parallel methods can be more scalable on higher dimensional data cube construction.
基于可扩展多维数组的并行数据立方体构造
数据立方的预计算对于提高联机分析处理系统的响应时间至关重要。为了满足不断增长的数据大小所带来的性能改进需求,用于数据立方体构造的并行解决方案正变得越来越重要。本文提出了两种基于可扩展多维数组的并行数据立方体构建方法,该多维数组可以沿着任意维度动态扩展,而无需重新定位任何现有数据。我们已经在共享内存多处理器上实现并评估了基于核心的并行数据立方体构建方法。在给定性能限制的情况下,该方法实现了接近线性的负载平衡加速。我们的实验还表明,我们的并行方法在高维数据立方体结构上具有更高的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信