Refining Action Boundaries for One-stage Detection

Hanyuan Wang, M. Mirmehdi, D. Damen, Toby Perrett
{"title":"Refining Action Boundaries for One-stage Detection","authors":"Hanyuan Wang, M. Mirmehdi, D. Damen, Toby Perrett","doi":"10.1109/AVSS56176.2022.9959554","DOIUrl":null,"url":null,"abstract":"Current one-stage action detection methods, which simultaneously predict action boundaries and the corresponding class, do not estimate or use a measure of confidence in their boundary predictions, which can lead to inaccurate boundaries. We incorporate the estimation of boundary confidence into one-stage anchor-free detection, through an additional prediction head that predicts the refined boundaries with higher confidence. We obtain state-of-the-art performance on the challenging EPICKITCHENS-100 action detection as well as the standard THUMOS14 action detection benchmarks, and achieve improvement on the ActivityNet-1.3 benchmark.","PeriodicalId":408581,"journal":{"name":"2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS56176.2022.9959554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Current one-stage action detection methods, which simultaneously predict action boundaries and the corresponding class, do not estimate or use a measure of confidence in their boundary predictions, which can lead to inaccurate boundaries. We incorporate the estimation of boundary confidence into one-stage anchor-free detection, through an additional prediction head that predicts the refined boundaries with higher confidence. We obtain state-of-the-art performance on the challenging EPICKITCHENS-100 action detection as well as the standard THUMOS14 action detection benchmarks, and achieve improvement on the ActivityNet-1.3 benchmark.
细化单阶段检测的动作边界
目前的单阶段动作检测方法同时预测动作边界和相应的类,但在其边界预测中没有估计或使用置信度,这可能导致不准确的边界。我们通过一个额外的预测头,以更高的置信度预测精细边界,将边界置信度估计纳入到一级无锚检测中。我们在具有挑战性的EPICKITCHENS-100动作检测以及标准THUMOS14动作检测基准上获得了最先进的性能,并在ActivityNet-1.3基准上实现了改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信