RACKNet

Yash Garg, K. Candan
{"title":"RACKNet","authors":"Yash Garg, K. Candan","doi":"10.1145/3323873.3325057","DOIUrl":null,"url":null,"abstract":"Despite their impressive success when these hyper-parameters are suitably fine-tuned, the design of good network architectures remains an art-form rather than a science: while various search techniques, such as grid-search, have been proposed to find effective hyper-parameter configurations, often these parameters are hand-crafted (or the bounds of the search space are provided by a user). In this paper, we argue, and experimentally show, that we can minimize the need for hand-crafting, by relying on the dataset itself. In particular, we show that the dimensions, distributions, and complexities of localized features extracted from the data can inform the structure of the neural networks and help better allocate limited resources (such as kernels) to the various layers of the network. To achieve this, we first present several hypotheses that link the properties of the localized image features to the CNN and RCNN architectures and then, relying on these hypotheses, present a RACKNet framework which aims to learn multiple hyper-parameters by extracting information encoded in the input datasets. Experimental evaluations of RACKNet against major benchmark datasets, such as MNIST, SVHN, CIFAR10, COIL20 and ImageNet, show that RACKNet provides significant improvements in the network design and robustness to change in the network.","PeriodicalId":149041,"journal":{"name":"Proceedings of the 2019 on International Conference on Multimedia Retrieval","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3323873.3325057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Despite their impressive success when these hyper-parameters are suitably fine-tuned, the design of good network architectures remains an art-form rather than a science: while various search techniques, such as grid-search, have been proposed to find effective hyper-parameter configurations, often these parameters are hand-crafted (or the bounds of the search space are provided by a user). In this paper, we argue, and experimentally show, that we can minimize the need for hand-crafting, by relying on the dataset itself. In particular, we show that the dimensions, distributions, and complexities of localized features extracted from the data can inform the structure of the neural networks and help better allocate limited resources (such as kernels) to the various layers of the network. To achieve this, we first present several hypotheses that link the properties of the localized image features to the CNN and RCNN architectures and then, relying on these hypotheses, present a RACKNet framework which aims to learn multiple hyper-parameters by extracting information encoded in the input datasets. Experimental evaluations of RACKNet against major benchmark datasets, such as MNIST, SVHN, CIFAR10, COIL20 and ImageNet, show that RACKNet provides significant improvements in the network design and robustness to change in the network.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信