2. Euclidean geometry

M. Dunajski
{"title":"2. Euclidean geometry","authors":"M. Dunajski","doi":"10.1093/actrade/9780199683680.003.0002","DOIUrl":null,"url":null,"abstract":"‘Euclidean geometry’ talks about the cultures that grew up in the arid region of Mesopotamia in the fourth millennium BC that needed to find geometrical solutions to their problems. Dividing and surveying the land after periodic floods relied on measuring distances and computing areas. Euclidean geometry forms geometric intuition that gives an accurate description of the space of land. Euclid of Alexandria put geometry in a logical framework and used axioms to define complicated objects such as triangles. The theorems are logical consequences of axioms that take a long time to prove.","PeriodicalId":420147,"journal":{"name":"Geometry: A Very Short Introduction","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry: A Very Short Introduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/actrade/9780199683680.003.0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

‘Euclidean geometry’ talks about the cultures that grew up in the arid region of Mesopotamia in the fourth millennium BC that needed to find geometrical solutions to their problems. Dividing and surveying the land after periodic floods relied on measuring distances and computing areas. Euclidean geometry forms geometric intuition that gives an accurate description of the space of land. Euclid of Alexandria put geometry in a logical framework and used axioms to define complicated objects such as triangles. The theorems are logical consequences of axioms that take a long time to prove.
2. 欧几里德几何
《欧几里得几何》讲述了公元前四千年在美索不达米亚干旱地区发展起来的文化,他们需要找到解决问题的几何方法。周期性洪水过后的土地划分和测量依赖于测量距离和计算面积。欧几里得几何形成了对土地空间的精确描述的几何直觉。亚历山大的欧几里得把几何学放在一个逻辑框架中,并用公理来定义复杂的物体,比如三角形。这些定理是需要很长时间才能证明的公理的逻辑结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信