Distributed Kalman filter via Gaussian Belief Propagation

Danny Bickson, O. Shental, D. Dolev
{"title":"Distributed Kalman filter via Gaussian Belief Propagation","authors":"Danny Bickson, O. Shental, D. Dolev","doi":"10.1109/ALLERTON.2008.4797617","DOIUrl":null,"url":null,"abstract":"Recent result shows how to compute distributively and efficiently the linear MMSE for the multiuser detection problem, using the Gaussian BP algorithm. In the current work, we extend this construction, and show that operating this algorithm twice on the matching inputs, has several interesting interpretations. First, we show equivalence to computing one iteration of the Kalman filter. Second, we show that the Kalman filter is a special case of the Gaussian information bottleneck algorithm, when the weight parameter beta = 1. Third, we discuss the relation to the Affine-scaling interior-point method and show it is a special case of Kalman filter. Besides of the theoretical interest of this linking estimation, compression/clustering and optimization, we allow a single distributed implementation of those algorithms, which is a highly practical and important task in sensor and mobile ad-hoc networks. Application to numerous problem domains includes collaborative signal processing and distributed allocation of resources in a communication network.","PeriodicalId":120561,"journal":{"name":"2008 46th Annual Allerton Conference on Communication, Control, and Computing","volume":"446 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 46th Annual Allerton Conference on Communication, Control, and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2008.4797617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Recent result shows how to compute distributively and efficiently the linear MMSE for the multiuser detection problem, using the Gaussian BP algorithm. In the current work, we extend this construction, and show that operating this algorithm twice on the matching inputs, has several interesting interpretations. First, we show equivalence to computing one iteration of the Kalman filter. Second, we show that the Kalman filter is a special case of the Gaussian information bottleneck algorithm, when the weight parameter beta = 1. Third, we discuss the relation to the Affine-scaling interior-point method and show it is a special case of Kalman filter. Besides of the theoretical interest of this linking estimation, compression/clustering and optimization, we allow a single distributed implementation of those algorithms, which is a highly practical and important task in sensor and mobile ad-hoc networks. Application to numerous problem domains includes collaborative signal processing and distributed allocation of resources in a communication network.
基于高斯信念传播的分布式卡尔曼滤波
最近的研究结果显示了如何使用高斯BP算法来高效地计算多用户检测问题的线性MMSE。在当前的工作中,我们扩展了这个结构,并表明在匹配输入上操作该算法两次有几个有趣的解释。首先,我们证明了等价计算一次卡尔曼滤波器的迭代。其次,我们证明了卡尔曼滤波是高斯信息瓶颈算法的一种特殊情况,当权重参数β = 1时。第三,讨论了与仿射尺度内点法的关系,并指出它是卡尔曼滤波的一种特例。除了对链接估计、压缩/聚类和优化的理论兴趣之外,我们还允许这些算法的单一分布式实现,这在传感器和移动自组织网络中是一项非常实用和重要的任务。应用于许多问题领域,包括协作信号处理和通信网络中资源的分布式分配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信