{"title":"Parity Detection for Some Three-Modulus Residue Number System","authors":"D. Guan, Yu-Shan Cheng","doi":"10.1109/AsiaJCIS.2014.13","DOIUrl":null,"url":null,"abstract":"In this paper, we present a parity detection algorithm for residue number system using three-modulus set {2p -- 1, 2p + 1, 2p<sup>2</sup> -- 1}, where p is a positive integer. Given residue number system representation of X = (x1, x2, x3) where x1 = X mod 2p-1, x2 = X mod 2p+1, x<sub>3</sub> = X mod 2p<sup>2</sup> -- 1. We show that the parity of X can be computed by (x1 + x2 + x<sub>3</sub> + G (d) mod 2, where d = p (x2 -- x1) + (2x<sub>3</sub> -- x1 -- x2), G (d) = 1, if d > 2 (2p<sup>2</sup> -- 1) or d <; 0, otherwise, G(d) = 0.","PeriodicalId":354543,"journal":{"name":"2014 Ninth Asia Joint Conference on Information Security","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Ninth Asia Joint Conference on Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AsiaJCIS.2014.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, we present a parity detection algorithm for residue number system using three-modulus set {2p -- 1, 2p + 1, 2p2 -- 1}, where p is a positive integer. Given residue number system representation of X = (x1, x2, x3) where x1 = X mod 2p-1, x2 = X mod 2p+1, x3 = X mod 2p2 -- 1. We show that the parity of X can be computed by (x1 + x2 + x3 + G (d) mod 2, where d = p (x2 -- x1) + (2x3 -- x1 -- x2), G (d) = 1, if d > 2 (2p2 -- 1) or d <; 0, otherwise, G(d) = 0.
本文利用三模集{2p—1,2p + 1,2p2—1}给出了残数系统的奇偶检测算法,其中p为正整数。给定X = (x1, x2, x3)的剩数系统表示,其中x1 = X mod 2p-1, x2 = X mod 2p+1, x3 = X mod 2p2 -1。我们证明了X的奇偶性可以用(x1 + x2 + x3 + G (d) mod 2来计算,其中d = p (x2—x1) + (2x3—x1—x2), G (d) = 1,如果d > 2 (2p2—1)或d <;0,否则G(d) = 0。