Towards Linked Data for Wikidata Revisions and Twitter Trending Hashtags

Paula Dooley, Bojan Bozic
{"title":"Towards Linked Data for Wikidata Revisions and Twitter Trending Hashtags","authors":"Paula Dooley, Bojan Bozic","doi":"10.1145/3366030.3366048","DOIUrl":null,"url":null,"abstract":"This paper uses Twitter as a microblogging platform to link hashtags, which relate the message to a topic that is shared among users, to Wikidata, a central knowledge base of information relying on its members and machine bots to keeping its content up to date. The data is stored in a highly structured format, with the added SPARQL Protocol And RDF Query Language (SPARQL) endpoint to allow users to query its knowledge base. Our research, designs and implements a process to stream live Twitter tweets and to parse existing Wikidata revision XML files provided by Wikidata. Furthermore, we identify if a correlation exists between the top Twitter hashtags and Wikidata revisions over a seventy-seven-day period. We have used statistical evaluation tools, such as 'Jaccard Ratio' and 'Kolmogorov-Smirnov' to investigate a significant statistical correlation between Twitter hashtags and Wikidata revisions over the studied period.","PeriodicalId":446280,"journal":{"name":"Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366030.3366048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper uses Twitter as a microblogging platform to link hashtags, which relate the message to a topic that is shared among users, to Wikidata, a central knowledge base of information relying on its members and machine bots to keeping its content up to date. The data is stored in a highly structured format, with the added SPARQL Protocol And RDF Query Language (SPARQL) endpoint to allow users to query its knowledge base. Our research, designs and implements a process to stream live Twitter tweets and to parse existing Wikidata revision XML files provided by Wikidata. Furthermore, we identify if a correlation exists between the top Twitter hashtags and Wikidata revisions over a seventy-seven-day period. We have used statistical evaluation tools, such as 'Jaccard Ratio' and 'Kolmogorov-Smirnov' to investigate a significant statistical correlation between Twitter hashtags and Wikidata revisions over the studied period.
面向维基数据修订和Twitter趋势标签的关联数据
本文使用Twitter作为微博平台,将hashtag(将信息与用户共享的主题联系起来)与Wikidata(一个依靠其成员和机器机器人保持内容更新的信息中心知识库)连接起来。数据以高度结构化的格式存储,并添加了SPARQL协议和RDF查询语言(SPARQL)端点,以允许用户查询其知识库。我们研究、设计并实现了一个流程,用于流媒体直播Twitter tweets和解析由Wikidata提供的现有Wikidata修订XML文件。此外,我们确定在77天的时间内,推特热门标签和维基数据修订之间是否存在相关性。我们使用了统计评估工具,如“Jaccard Ratio”和“Kolmogorov-Smirnov”来调查在研究期间Twitter标签和维基数据修订之间的显著统计相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信