Soil moisture retrieval from SMOS observations using neural networks

N. Rodríguez-Fernández, P. Richaume, F. Aires, C. Prigent, Y. Kerr, J. Kolassa, C. Jiménez, F. Cabot, A. Mahmoodi
{"title":"Soil moisture retrieval from SMOS observations using neural networks","authors":"N. Rodríguez-Fernández, P. Richaume, F. Aires, C. Prigent, Y. Kerr, J. Kolassa, C. Jiménez, F. Cabot, A. Mahmoodi","doi":"10.1109/IGARSS.2014.6946963","DOIUrl":null,"url":null,"abstract":"A methodology to retrieve soil moisture (SM) from multiinstrument remote sensing data is presented. The method uses a Neural Network (NN) to find the statistical relationship linking the input data to a reference SM dataset. The input data is composed of passive microwaves (L-band SMOS brightness temperatures), active microwaves (C-band ASCAT backscattering coefficients), and visible and infrared observations by MODIS. The reference SM data used to train the NN are ECMWF model predictions or SMOS L3 SM. After determining the best configuration of input data to retrieve SM using a NN, the NN soil moisture product is evaluated with respect to other global SM products and with respect to in situ measurements. The NN is able to capture the spatial and temporal dynamics of SM, and the SM computed with NNs compares well with the other SM datasets.","PeriodicalId":385645,"journal":{"name":"2014 IEEE Geoscience and Remote Sensing Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2014.6946963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

A methodology to retrieve soil moisture (SM) from multiinstrument remote sensing data is presented. The method uses a Neural Network (NN) to find the statistical relationship linking the input data to a reference SM dataset. The input data is composed of passive microwaves (L-band SMOS brightness temperatures), active microwaves (C-band ASCAT backscattering coefficients), and visible and infrared observations by MODIS. The reference SM data used to train the NN are ECMWF model predictions or SMOS L3 SM. After determining the best configuration of input data to retrieve SM using a NN, the NN soil moisture product is evaluated with respect to other global SM products and with respect to in situ measurements. The NN is able to capture the spatial and temporal dynamics of SM, and the SM computed with NNs compares well with the other SM datasets.
基于神经网络的SMOS观测反演土壤水分
提出了一种多仪器遥感数据反演土壤水分的方法。该方法使用神经网络(NN)来查找输入数据与参考SM数据集之间的统计关系。输入数据由被动微波(l波段SMOS亮度温度)、主动微波(c波段ASCAT后向散射系数)以及MODIS可见光和红外观测数据组成。用于训练神经网络的参考SM数据是ECMWF模型预测或SMOS L3 SM。在确定使用神经网络检索SM的最佳输入数据配置后,神经网络土壤湿度产品相对于其他全局SM产品和相对于原位测量进行评估。神经网络能够捕捉到SM的时空动态,用神经网络计算的SM与其他SM数据集相比效果良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信