Feature Selection for the Classification of Longitudinal Human Ageing Data

Tossapol Pomsuwan, A. Freitas
{"title":"Feature Selection for the Classification of Longitudinal Human Ageing Data","authors":"Tossapol Pomsuwan, A. Freitas","doi":"10.1109/ICDMW.2017.102","DOIUrl":null,"url":null,"abstract":"We propose a new variant of the Correlation-based Feature Selection (CFS) method for coping with longitudinal data – where variables are repeatedly measured across different time points. The proposed CFS variant is evaluated on ten datasets created using data from the English Longitudinal Study of Ageing (ELSA), with different age-related diseases used as the class variables to be predicted. The results show that, overall, the proposed CFS variant leads to better predictive performance than the standard CFS and the baseline approach of no feature selection, when using Naïve Bayes and J48 decision tree induction as classification algorithms (although the difference in performance is very small in the results for J4.8). We also report the most relevant features selected by J48 across the datasets.","PeriodicalId":389183,"journal":{"name":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2017.102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We propose a new variant of the Correlation-based Feature Selection (CFS) method for coping with longitudinal data – where variables are repeatedly measured across different time points. The proposed CFS variant is evaluated on ten datasets created using data from the English Longitudinal Study of Ageing (ELSA), with different age-related diseases used as the class variables to be predicted. The results show that, overall, the proposed CFS variant leads to better predictive performance than the standard CFS and the baseline approach of no feature selection, when using Naïve Bayes and J48 decision tree induction as classification algorithms (although the difference in performance is very small in the results for J4.8). We also report the most relevant features selected by J48 across the datasets.
纵向人类衰老数据分类的特征选择
我们提出了一种新的基于关联的特征选择(CFS)方法,用于处理纵向数据,其中变量在不同的时间点上重复测量。提出的CFS变异是在使用英国老龄化纵向研究(ELSA)数据创建的10个数据集上进行评估的,不同的年龄相关疾病被用作要预测的类别变量。结果表明,总体而言,当使用Naïve Bayes和J48决策树归纳作为分类算法时,所提出的CFS变体的预测性能优于标准CFS和无特征选择的基线方法(尽管在J4.8的结果中性能差异很小)。我们还报告了J48在数据集中选择的最相关的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信