Clustering of web sessions by FOGSAA

Angana Chakraborty, S. Bandyopadhyay
{"title":"Clustering of web sessions by FOGSAA","authors":"Angana Chakraborty, S. Bandyopadhyay","doi":"10.1109/RAICS.2013.6745488","DOIUrl":null,"url":null,"abstract":"Clustering of the web sessions to identify the vis-itors' choices while browsing the web pages, is an important problem in web mining. The sequence of pages viewed by the user in a particular time-frame, i.e., the session, captures his/her interest in a specific topic. Clustering of these sessions is therefore needed to provide customized services to the users having similar interests. In this article, we propose a novel and accurate similarity measure, Psim, between two web pages and a method of clustering the web sessions using a recently developed Fast Optimal Global Sequence Alignment Algorithm (FOGSAA). FOGSAA is an optimal global alignment algorithm which is used to align the pairs of sessions. It computes the pair-wise distances, which is used to cluster the sessions in similar groups. FOGSAA aligns the sessions in much less time and results in an average time gain of 35.84% over the conventional dynamic programming based Needleman-Wunsch's method, where both are generating the same optimal alignment. Therefore, application of FOGSAA to align the sessions makes the procedure faster and at the same time maintains the quality.","PeriodicalId":184155,"journal":{"name":"2013 IEEE Recent Advances in Intelligent Computational Systems (RAICS)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Recent Advances in Intelligent Computational Systems (RAICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAICS.2013.6745488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Clustering of the web sessions to identify the vis-itors' choices while browsing the web pages, is an important problem in web mining. The sequence of pages viewed by the user in a particular time-frame, i.e., the session, captures his/her interest in a specific topic. Clustering of these sessions is therefore needed to provide customized services to the users having similar interests. In this article, we propose a novel and accurate similarity measure, Psim, between two web pages and a method of clustering the web sessions using a recently developed Fast Optimal Global Sequence Alignment Algorithm (FOGSAA). FOGSAA is an optimal global alignment algorithm which is used to align the pairs of sessions. It computes the pair-wise distances, which is used to cluster the sessions in similar groups. FOGSAA aligns the sessions in much less time and results in an average time gain of 35.84% over the conventional dynamic programming based Needleman-Wunsch's method, where both are generating the same optimal alignment. Therefore, application of FOGSAA to align the sessions makes the procedure faster and at the same time maintains the quality.
基于FOGSAA的web会话聚类
对网页会话进行聚类,识别访问者在浏览网页时的选择,是网页挖掘中的一个重要问题。用户在特定时间框架(即会话)内查看的页面序列捕获了他/她对特定主题的兴趣。因此,需要对这些会议进行聚类,以便为具有相似兴趣的用户提供定制服务。在这篇文章中,我们提出了一个新的和准确的相似性度量,Psim,在两个网页之间和一个方法聚类的网页会话使用最近开发的快速最优全局序列对齐算法(FOGSAA)。FOGSAA是一种最优全局对齐算法,用于对会话对进行对齐。它计算成对距离,用于将会话聚类到相似的组中。与传统的基于Needleman-Wunsch的动态规划方法相比,FOGSAA在更短的时间内对齐会话,平均时间增益为35.84%,两者都产生相同的最佳对齐。因此,应用FOGSAA来调整会话使程序更快,同时保持质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信