Fast Subspace Clustering Algorithm with Efficient Similarity-Constrained Sampling for Hyperspectral Images

Jhon Lopez, Carlos Hinojosa, H. Arguello
{"title":"Fast Subspace Clustering Algorithm with Efficient Similarity-Constrained Sampling for Hyperspectral Images","authors":"Jhon Lopez, Carlos Hinojosa, H. Arguello","doi":"10.1109/mlsp52302.2021.9596507","DOIUrl":null,"url":null,"abstract":"Hyperspectral images (HSIs) are high-dimensional and complex images that provide rich spectral information of the scenes. Image processing and remote sensing communities are currently developing unsupervised learning methods for HSI classification due to the lack of labeled data. Subspace clustering (SC) methods based on spectral clustering have achieved high clustering performance in real data experiments. However, the computational complexity of such methods prevents their use on large HSI since they require building a similarity matrix that should account for all the pixels in the image. This work proposes an efficient SC-based method that reduces the temporal and spatial computational complexity by splitting the HSI clustering task using similarity-constrained sampling, which considers the spatial information to boost the clustering performance. Experimental results on two widely used HSI data sets show the proposed method's effectiveness, outperforming the baseline methods in more than 20% of overall accuracy.","PeriodicalId":156116,"journal":{"name":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mlsp52302.2021.9596507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperspectral images (HSIs) are high-dimensional and complex images that provide rich spectral information of the scenes. Image processing and remote sensing communities are currently developing unsupervised learning methods for HSI classification due to the lack of labeled data. Subspace clustering (SC) methods based on spectral clustering have achieved high clustering performance in real data experiments. However, the computational complexity of such methods prevents their use on large HSI since they require building a similarity matrix that should account for all the pixels in the image. This work proposes an efficient SC-based method that reduces the temporal and spatial computational complexity by splitting the HSI clustering task using similarity-constrained sampling, which considers the spatial information to boost the clustering performance. Experimental results on two widely used HSI data sets show the proposed method's effectiveness, outperforming the baseline methods in more than 20% of overall accuracy.
高光谱图像快速子空间聚类算法与高效相似约束采样
高光谱图像是一种高维、复杂的图像,提供了丰富的场景光谱信息。由于缺乏标记数据,图像处理和遥感社区目前正在开发用于HSI分类的无监督学习方法。基于谱聚类的子空间聚类方法在实际数据实验中取得了较高的聚类性能。然而,这种方法的计算复杂性阻碍了它们在大型HSI上的使用,因为它们需要建立一个应该考虑图像中所有像素的相似性矩阵。本文提出了一种高效的基于sc的方法,通过使用相似性约束采样拆分HSI聚类任务来降低时间和空间计算复杂度,该方法考虑了空间信息以提高聚类性能。在两个广泛使用的HSI数据集上的实验结果表明,所提出的方法是有效的,其总体准确率超过基准方法的20%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信