Adaptive dynamic programming for optimal control of unknown nonlinear discrete-time systems

Derong Liu, Ding Wang, Dongbin Zhao
{"title":"Adaptive dynamic programming for optimal control of unknown nonlinear discrete-time systems","authors":"Derong Liu, Ding Wang, Dongbin Zhao","doi":"10.1109/ADPRL.2011.5967357","DOIUrl":null,"url":null,"abstract":"An intelligent optimal control scheme for unknown nonlinear discrete-time systems with discount factor in the cost function is proposed in this paper. An iterative adaptive dynamic programming (ADP) algorithm via globalized dual heuristic programming (GDHP) technique is developed to obtain the optimal controller with convergence analysis. Three neural networks are used as parametric structures to facilitate the implementation of the iterative algorithm, which will approximate at each iteration the cost function, the optimal control law, and the unknown nonlinear system, respectively. Two simulation examples are provided to verify the effectiveness of the presented optimal control approach.","PeriodicalId":406195,"journal":{"name":"2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL)","volume":"320 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ADPRL.2011.5967357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

An intelligent optimal control scheme for unknown nonlinear discrete-time systems with discount factor in the cost function is proposed in this paper. An iterative adaptive dynamic programming (ADP) algorithm via globalized dual heuristic programming (GDHP) technique is developed to obtain the optimal controller with convergence analysis. Three neural networks are used as parametric structures to facilitate the implementation of the iterative algorithm, which will approximate at each iteration the cost function, the optimal control law, and the unknown nonlinear system, respectively. Two simulation examples are provided to verify the effectiveness of the presented optimal control approach.
未知非线性离散系统的自适应动态规划最优控制
针对成本函数中含有折扣因子的未知非线性离散系统,提出了一种智能最优控制方案。提出了一种基于全球化对偶启发式规划(GDHP)的迭代自适应动态规划(ADP)算法,通过收敛性分析获得最优控制器。为了便于迭代算法的实现,采用了三个神经网络作为参数结构,在每次迭代时分别逼近代价函数、最优控制律和未知非线性系统。通过两个仿真实例验证了所提出的最优控制方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信