Composite Gene Module Discovery using Non-negative Independent Component Analysis

Ting Gong, J. Xuan, Yitan Zhu, Huaizhou Li, R. Clarke, E. Hoffman, Y. Wang
{"title":"Composite Gene Module Discovery using Non-negative Independent Component Analysis","authors":"Ting Gong, J. Xuan, Yitan Zhu, Huaizhou Li, R. Clarke, E. Hoffman, Y. Wang","doi":"10.1109/LSSA.2006.250434","DOIUrl":null,"url":null,"abstract":"Gene module discovery can provide comprehensive molecular portrait of biological regulation and functional genomics. We present a new analytic strategy - nonnegative independent component analysis to reveal some gene module composite. The results show that by grouping genes in the latent space, we can find statistically more significant enrichment of gene annotations within clusters. Further, this approach has been applied to a muscular dystrophy data set for gene module discovery","PeriodicalId":360097,"journal":{"name":"2006 IEEE/NLM Life Science Systems and Applications Workshop","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE/NLM Life Science Systems and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LSSA.2006.250434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Gene module discovery can provide comprehensive molecular portrait of biological regulation and functional genomics. We present a new analytic strategy - nonnegative independent component analysis to reveal some gene module composite. The results show that by grouping genes in the latent space, we can find statistically more significant enrichment of gene annotations within clusters. Further, this approach has been applied to a muscular dystrophy data set for gene module discovery
利用非负独立成分分析发现复合基因模块
基因模块的发现可以为生物学调控和功能基因组学提供全面的分子图谱。我们提出了一种新的分析策略——非负独立成分分析来揭示某些基因模块的组合。结果表明,通过对潜在空间中的基因进行分组,我们可以发现簇内基因注释的富集程度在统计学上更为显著。此外,该方法已应用于肌萎缩症数据集的基因模块发现
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信