Zhinan Qiao, Andrew Sansom, M. McGuire, Andrew Kalaani, Xu Ma, Qing Yang, Song Fu
{"title":"Accurate Object Detection in Smart Transportation Using Multiple Cameras","authors":"Zhinan Qiao, Andrew Sansom, M. McGuire, Andrew Kalaani, Xu Ma, Qing Yang, Song Fu","doi":"10.1109/MetroCAD48866.2020.00011","DOIUrl":null,"url":null,"abstract":"Recently, more and more attention has been paid to the connected object detection for better performance. One of the most interesting fields is learning from multiple resources in a connected fashion. In this paper, we present a connected object detection method using multiple cameras for the smart transportation system. The proposed architecture consists of three parts: an alignment framework, a deep multi-view fusion network and an object detection network. Experiments are conducted to illustrate the performance of our proposed architecture.","PeriodicalId":117440,"journal":{"name":"2020 International Conference on Connected and Autonomous Driving (MetroCAD)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Connected and Autonomous Driving (MetroCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroCAD48866.2020.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, more and more attention has been paid to the connected object detection for better performance. One of the most interesting fields is learning from multiple resources in a connected fashion. In this paper, we present a connected object detection method using multiple cameras for the smart transportation system. The proposed architecture consists of three parts: an alignment framework, a deep multi-view fusion network and an object detection network. Experiments are conducted to illustrate the performance of our proposed architecture.