Scalable image representation using improved retargeting pyramid

Yuichi Tanaka, K. Shirai
{"title":"Scalable image representation using improved retargeting pyramid","authors":"Yuichi Tanaka, K. Shirai","doi":"10.1109/ICASSP.2013.6638051","DOIUrl":null,"url":null,"abstract":"The retargeting pyramid (RP) method is a good alternative to the well-known Laplacian pyramid (LP) approach for multiscale image decomposition. RP can be obtained by replacing the low-pass filtering and downsampling processes in LP with content-aware image resizing (a.k.a. retargeting), which is a technique being developed in computer vision research. In this paper, we improve RP so that it obtains good scalable image representation. The improved RP is then integrated with a well-known multiscale-multidirection (MSMD) transform, contourlet transform, to construct a saliency-oriented MSMD image representation. In the experiment, our decomposition outperforms the conventional pyramid structures.","PeriodicalId":183968,"journal":{"name":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2013.6638051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The retargeting pyramid (RP) method is a good alternative to the well-known Laplacian pyramid (LP) approach for multiscale image decomposition. RP can be obtained by replacing the low-pass filtering and downsampling processes in LP with content-aware image resizing (a.k.a. retargeting), which is a technique being developed in computer vision research. In this paper, we improve RP so that it obtains good scalable image representation. The improved RP is then integrated with a well-known multiscale-multidirection (MSMD) transform, contourlet transform, to construct a saliency-oriented MSMD image representation. In the experiment, our decomposition outperforms the conventional pyramid structures.
使用改进的重定向金字塔的可扩展图像表示
重定位金字塔(RP)方法是一种很好的替代拉普拉斯金字塔(LP)方法的多尺度图像分解方法。RP可以通过用内容感知图像调整(即重定位)取代LP中的低通滤波和下采样过程来获得,这是计算机视觉研究中正在发展的一种技术。在本文中,我们改进了RP,使其获得了良好的可扩展图像表示。然后将改进后的RP与著名的多尺度多方向(MSMD)变换contourlet变换相结合,构建面向显著性的MSMD图像表示。在实验中,我们的分解优于传统的金字塔结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信