VGG FaceNet Based Sketch to Face Recognition with Morphable Model

Ajita A. Patil, B. S. Agarkar
{"title":"VGG FaceNet Based Sketch to Face Recognition with Morphable Model","authors":"Ajita A. Patil, B. S. Agarkar","doi":"10.1109/IBSSC56953.2022.10037264","DOIUrl":null,"url":null,"abstract":"Sketch to face recognition automation can play important role in forensic operations. The forensic departments can generate sketches with the help of drawing artists. The resulting sketch images may have difference compared to actual faces in terms of facial parts and expressions. The convolutional neural network (CNN) based method proposed in this paper shows augmentation based sketch and facial expression dataset generation by modifying the public dataset. The generated dataset is thus used to train the VGGFaceNet CNN model and performance is evaluated. The performance of VGGFaceNet model is tested with reference to parameters like accuracy, specificity and sensitivity. The proposed system indicates accuracy of 88% over to other conventional methods such as Local Binary Pattern, Support Vector Machine.","PeriodicalId":426897,"journal":{"name":"2022 IEEE Bombay Section Signature Conference (IBSSC)","volume":"292 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Bombay Section Signature Conference (IBSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBSSC56953.2022.10037264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sketch to face recognition automation can play important role in forensic operations. The forensic departments can generate sketches with the help of drawing artists. The resulting sketch images may have difference compared to actual faces in terms of facial parts and expressions. The convolutional neural network (CNN) based method proposed in this paper shows augmentation based sketch and facial expression dataset generation by modifying the public dataset. The generated dataset is thus used to train the VGGFaceNet CNN model and performance is evaluated. The performance of VGGFaceNet model is tested with reference to parameters like accuracy, specificity and sensitivity. The proposed system indicates accuracy of 88% over to other conventional methods such as Local Binary Pattern, Support Vector Machine.
基于VGG FaceNet的可变形模型人脸识别
素描到人脸的自动识别在司法鉴定中发挥着重要的作用。法医部门可以在绘画艺术家的帮助下生成草图。由此产生的素描图像可能在面部部位和表情方面与实际面孔有所不同。本文提出的基于卷积神经网络(CNN)的方法是通过修改公共数据集来生成基于增强的素描和面部表情数据集。生成的数据集用于训练VGGFaceNet CNN模型,并对其性能进行评估。参考准确性、特异性和灵敏度等参数对VGGFaceNet模型的性能进行了测试。该系统与传统的局部二值模式、支持向量机等方法相比,准确率达到88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信