Statistical and computational techniques for extraction of underlying systematic risk factors: a comparative study in the Mexican Stock Exchange

Rogelio Ladrón de Guevara Cortés, S. Porras, Enric Monte Moreno
{"title":"Statistical and computational techniques for extraction of underlying systematic risk factors: a comparative study in the Mexican Stock Exchange","authors":"Rogelio Ladrón de Guevara Cortés, S. Porras, Enric Monte Moreno","doi":"10.14718/revfinanzpolitecon.v13.n2.2021.9","DOIUrl":null,"url":null,"abstract":"This paper compares the dimension reduction or feature extraction techniques, e.g., Principal Component Analysis, Factor Analysis, Independent Component Analysis and Neural Networks Principal Component Analysis, which are used as techniques for extracting the underlying systematic risk factors driving the returns on equities of the Mexican Stock Exchange, under a statistical approach to the Arbitrage Pricing Theory. We carry out our research according to two different perspectives. First, we evaluate them from a theoretical and matrix scope, making a parallelism among their particular mixing and demixing processes, as well as the attributes of the factors extracted by each method. Secondly, we accomplish an empirical study in order to measure the level of accuracy in the reconstruction of the original variables.","PeriodicalId":377256,"journal":{"name":"Revista Finanzas y Política Económica","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Finanzas y Política Económica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14718/revfinanzpolitecon.v13.n2.2021.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper compares the dimension reduction or feature extraction techniques, e.g., Principal Component Analysis, Factor Analysis, Independent Component Analysis and Neural Networks Principal Component Analysis, which are used as techniques for extracting the underlying systematic risk factors driving the returns on equities of the Mexican Stock Exchange, under a statistical approach to the Arbitrage Pricing Theory. We carry out our research according to two different perspectives. First, we evaluate them from a theoretical and matrix scope, making a parallelism among their particular mixing and demixing processes, as well as the attributes of the factors extracted by each method. Secondly, we accomplish an empirical study in order to measure the level of accuracy in the reconstruction of the original variables.
用于提取潜在系统性风险因素的统计和计算技术:墨西哥证券交易所的比较研究
本文比较了在套利定价理论的统计方法下,用于提取驱动墨西哥证券交易所股票收益的潜在系统性风险因素的降维或特征提取技术,如主成分分析、因子分析、独立成分分析和神经网络主成分分析。我们从两个不同的角度进行研究。首先,我们从理论和矩阵的范围对它们进行评估,使它们的特定混合和分离过程之间的并行性,以及每种方法提取的因素的属性。其次,我们完成了一个实证研究,以衡量在原始变量的重建精度水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信