Machine Learning-based Short-term Rainfall Prediction from Sky Data

Fu Jie Tey, Tin-Yu Wu, Jiann-Liang Chen
{"title":"Machine Learning-based Short-term Rainfall Prediction from Sky Data","authors":"Fu Jie Tey, Tin-Yu Wu, Jiann-Liang Chen","doi":"10.1145/3502731","DOIUrl":null,"url":null,"abstract":"To predict rainfall, our proposed model architecture combines the Convolutional Neural Network (CNN), which uses the ResNet-152 pre-training model, with the Recurrent Neural Network (RNN), which uses the Long Short-term Memory Network (LSTM) layer, for model training. By encoding the cloud images through CNN, we extract the image feature vectors in the training process and train the vectors and meteorological data as the input of RNN. After training, the accuracy of the prediction model can reach up to 82%. The result has proven not only the outperformance of our proposed rainfall prediction method in terms of cost and prediction time, but also its accuracy and feasibility compared with general prediction methods.","PeriodicalId":435653,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data (TKDD)","volume":"239 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data (TKDD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3502731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To predict rainfall, our proposed model architecture combines the Convolutional Neural Network (CNN), which uses the ResNet-152 pre-training model, with the Recurrent Neural Network (RNN), which uses the Long Short-term Memory Network (LSTM) layer, for model training. By encoding the cloud images through CNN, we extract the image feature vectors in the training process and train the vectors and meteorological data as the input of RNN. After training, the accuracy of the prediction model can reach up to 82%. The result has proven not only the outperformance of our proposed rainfall prediction method in terms of cost and prediction time, but also its accuracy and feasibility compared with general prediction methods.
基于机器学习的天空数据短期降雨预测
为了预测降雨,我们提出的模型架构结合了使用ResNet-152预训练模型的卷积神经网络(CNN)和使用长短期记忆网络(LSTM)层的循环神经网络(RNN)进行模型训练。我们通过CNN对云图像进行编码,在训练过程中提取图像特征向量,并训练这些向量和气象数据作为RNN的输入。经过训练,预测模型的准确率可达82%。结果表明,本文提出的降雨预测方法不仅在成本和预测时间方面具有优势,而且与一般预测方法相比,其准确性和可行性也有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信