Cross Domain Descriptor for Face Sketch-Photo Image Recognition

Veena A. Kumar, K. Rajesh, R. Antony
{"title":"Cross Domain Descriptor for Face Sketch-Photo Image Recognition","authors":"Veena A. Kumar, K. Rajesh, R. Antony","doi":"10.1109/ACCESS51619.2021.9563314","DOIUrl":null,"url":null,"abstract":"Face-sketch to Face-photo matching or recognition is a cross domain modelling problem which identifies the face based on the given sketch query. The sketch and photo differs in their representation so matching the different representations is a challenging task. Compared to hand-crafted image descriptors deep descriptors perform well in solving the problem. Extracting the patches from the sketches and photos can improve the efficiency of the technique. This method is implemented with the benchmarked datasets CUFS, CUFSF and IIITD. The deep descriptor is developed using pre-trained CNN with triplet loss to learn the features. The method performance is better when results are compared with similar procedures.","PeriodicalId":409648,"journal":{"name":"2021 2nd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACCESS51619.2021.9563314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Face-sketch to Face-photo matching or recognition is a cross domain modelling problem which identifies the face based on the given sketch query. The sketch and photo differs in their representation so matching the different representations is a challenging task. Compared to hand-crafted image descriptors deep descriptors perform well in solving the problem. Extracting the patches from the sketches and photos can improve the efficiency of the technique. This method is implemented with the benchmarked datasets CUFS, CUFSF and IIITD. The deep descriptor is developed using pre-trained CNN with triplet loss to learn the features. The method performance is better when results are compared with similar procedures.
人脸素描-照片图像识别的跨域描述符
人脸草图到人脸照片的匹配或识别是一个基于给定的草图查询来识别人脸的跨域建模问题。素描和照片的表现方式不同,因此匹配不同的表现方式是一项具有挑战性的任务。与手工制作的图像描述符相比,深度描述符在解决问题方面表现良好。从草图和照片中提取补丁可以提高该技术的效率。该方法在基准数据集CUFS、CUFSF和IIITD上实现。深度描述符是使用预训练的具有三重损失的CNN来学习特征。将结果与同类方法进行比较,结果表明该方法性能较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信