Item Contents Good, User Tags Better: Empirical Evaluation of a Food Recommender System

David Massimo, Mehdi Elahi, Mouzhi Ge, F. Ricci
{"title":"Item Contents Good, User Tags Better: Empirical Evaluation of a Food Recommender System","authors":"David Massimo, Mehdi Elahi, Mouzhi Ge, F. Ricci","doi":"10.1145/3079628.3079640","DOIUrl":null,"url":null,"abstract":"Traditional food recommender systems exploit items' ratings and descriptions in order to generate relevant recommendations for the users. While this data is important, it might not entirely capture the true users' preferences. In this paper, we analyse the performance of a food recommender that allows users to enter their preferences in the form of both ratings and tags, which are then used by a Matrix Factorization (MF) rating prediction model. The performed offline and online experiments have clarified the importance of user tags in comparison to content features. While item content contributes more to the quality of the prediction accuracy, user tags yields better ranking quality. Even more importantly, a live user study has revealed that a system variant, which leverages user tags in the prediction model and in the interface, achieves a significantly better user evaluation in terms of perceived effectiveness, choice satisfaction and choice difficulty.","PeriodicalId":216017,"journal":{"name":"Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization","volume":"166 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3079628.3079640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Traditional food recommender systems exploit items' ratings and descriptions in order to generate relevant recommendations for the users. While this data is important, it might not entirely capture the true users' preferences. In this paper, we analyse the performance of a food recommender that allows users to enter their preferences in the form of both ratings and tags, which are then used by a Matrix Factorization (MF) rating prediction model. The performed offline and online experiments have clarified the importance of user tags in comparison to content features. While item content contributes more to the quality of the prediction accuracy, user tags yields better ranking quality. Even more importantly, a live user study has revealed that a system variant, which leverages user tags in the prediction model and in the interface, achieves a significantly better user evaluation in terms of perceived effectiveness, choice satisfaction and choice difficulty.
项目内容好,用户标签更好:食品推荐系统的实证评价
传统的食物推荐系统利用食物的评级和描述来为用户生成相关的推荐。虽然这些数据很重要,但它可能无法完全捕捉到真正的用户偏好。在本文中,我们分析了食品推荐器的性能,该推荐器允许用户以评级和标签的形式输入他们的偏好,然后将其用于矩阵分解(MF)评级预测模型。进行的离线和在线实验已经澄清了与内容功能相比,用户标签的重要性。虽然项目内容对预测精度的贡献更大,但用户标签产生的排名质量更好。更重要的是,一项实时用户研究表明,在预测模型和界面中利用用户标签的系统变体,在感知有效性、选择满意度和选择难度方面取得了明显更好的用户评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信