S. Papadopoulos, Christos Zigkolis, Giorgos Tolias, Yannis Kalantidis, Phivos Mylonas, Y. Kompatsiaris, A. Vakali
{"title":"Image clustering through community detection on hybrid image similarity graphs","authors":"S. Papadopoulos, Christos Zigkolis, Giorgos Tolias, Yannis Kalantidis, Phivos Mylonas, Y. Kompatsiaris, A. Vakali","doi":"10.1109/ICIP.2010.5653478","DOIUrl":null,"url":null,"abstract":"The wide adoption of photo sharing applications such as Flickr © and the massive amounts of user-generated content uploaded to them raises an information overload issue for users. An established technique to overcome such an overload is to cluster images into groups based on their similarity and then use the derived clusters to assist navigation and browsing of the collection. In this paper, we present a community detection (i.e. graph-based clustering) approach that makes use of both visual and tagging features of images in order to efficiently extract groups of related images within large image collections. Based on experiments we conducted on a dataset comprising publicly available images from Flickr ©, we demonstrate the efficiency of our method, the added value of combining visual and tag features and the utility of the derived clusters for exploring an image collection.","PeriodicalId":228308,"journal":{"name":"2010 IEEE International Conference on Image Processing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2010.5653478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
基于混合图像相似图的群体检测图像聚类
照片共享应用程序(如Flickr©)的广泛采用以及大量用户生成的内容上传到这些应用程序上,给用户带来了信息过载的问题。克服这种过载的一种成熟技术是根据图像的相似性将其聚类成组,然后使用派生的聚类来帮助导航和浏览集合。在本文中,我们提出了一种社区检测(即基于图的聚类)方法,该方法利用图像的视觉和标记特征,以便在大型图像集合中有效地提取相关图像组。基于我们对Flickr©上公开可用图像的数据集进行的实验,我们展示了我们方法的效率,结合视觉和标签特征的附加价值以及派生聚类在探索图像集合时的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。