Differential Privacy for Clinical Trial Data: Preliminary Evaluations

Duy Vu, A. Slavkovic
{"title":"Differential Privacy for Clinical Trial Data: Preliminary Evaluations","authors":"Duy Vu, A. Slavkovic","doi":"10.1109/ICDMW.2009.52","DOIUrl":null,"url":null,"abstract":"The concept of differential privacy as a rigorous definition of privacy has emerged from the cryptographic community. However, further careful evaluation is needed before we can apply these theoretical results to privacy preservation in everyday data mining and statistical analysis. In this paper we demonstrate how to integrate a differential privacy framework with the classical statistical hypothesis testing in the domain of clinical trials where personal information is sensitive. We develop concrete methodology that researchers can use. We derive rules for the sample size adjustment whereby both statistical efficiency and differential privacy can be achieved for the specific tests for binomial random variables and in contingency tables.","PeriodicalId":351078,"journal":{"name":"2009 IEEE International Conference on Data Mining Workshops","volume":"263 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"109","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2009.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 109

Abstract

The concept of differential privacy as a rigorous definition of privacy has emerged from the cryptographic community. However, further careful evaluation is needed before we can apply these theoretical results to privacy preservation in everyday data mining and statistical analysis. In this paper we demonstrate how to integrate a differential privacy framework with the classical statistical hypothesis testing in the domain of clinical trials where personal information is sensitive. We develop concrete methodology that researchers can use. We derive rules for the sample size adjustment whereby both statistical efficiency and differential privacy can be achieved for the specific tests for binomial random variables and in contingency tables.
临床试验数据的差异隐私:初步评估
差分隐私的概念作为一种严格的隐私定义已经从密码学社区中出现。然而,在将这些理论结果应用于日常数据挖掘和统计分析中的隐私保护之前,还需要进一步的仔细评估。在本文中,我们展示了如何在个人信息敏感的临床试验领域将差分隐私框架与经典统计假设检验相结合。我们开发了研究人员可以使用的具体方法。我们推导出样本大小调整的规则,从而在二项随机变量和列联表的特定测试中实现统计效率和差分隐私。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信