Improved ant colony algorithm for Traveling Salesman Problems

Peidong Wang, G. Tang, Yang Li, Xi-xin Yang
{"title":"Improved ant colony algorithm for Traveling Salesman Problems","authors":"Peidong Wang, G. Tang, Yang Li, Xi-xin Yang","doi":"10.1109/CCDC.2012.6242982","DOIUrl":null,"url":null,"abstract":"An improved ant colony algorithm is proposed in this paper for Traveling Salesman Problems (TSPs). In the process of searching, the ants are more sensitive to the optimal path because the inverse of distance among cities is chosen as the heuristic information, while a candidate list is used to limit the number of candidate city. The method of local and global dynamic phenomenon update is used in order to adjust the distribution of phenomenon according to the routes. The method of 2-opt is only used for the current optimal tour, enhancing the convergence speed. The simulation results demonstrate the proposed algorithm works well and efficient.","PeriodicalId":345790,"journal":{"name":"2012 24th Chinese Control and Decision Conference (CCDC)","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 24th Chinese Control and Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2012.6242982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

An improved ant colony algorithm is proposed in this paper for Traveling Salesman Problems (TSPs). In the process of searching, the ants are more sensitive to the optimal path because the inverse of distance among cities is chosen as the heuristic information, while a candidate list is used to limit the number of candidate city. The method of local and global dynamic phenomenon update is used in order to adjust the distribution of phenomenon according to the routes. The method of 2-opt is only used for the current optimal tour, enhancing the convergence speed. The simulation results demonstrate the proposed algorithm works well and efficient.
旅行商问题的改进蚁群算法
针对旅行商问题,提出了一种改进的蚁群算法。在搜索过程中,蚂蚁对最优路径更敏感,因为它选择城市间距离的倒数作为启发式信息,并使用候选列表来限制候选城市的数量。采用局部和全局动态现象更新的方法,根据路由调整现象的分布。2-opt方法仅用于当前最优巡回,提高了收敛速度。仿真结果证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信