Improving Graph Neural Network with Learnable Permutation Pooling

Yu Jin, J. JáJá
{"title":"Improving Graph Neural Network with Learnable Permutation Pooling","authors":"Yu Jin, J. JáJá","doi":"10.1109/ICDMW58026.2022.00094","DOIUrl":null,"url":null,"abstract":"Graph neural networks (GNN) have achieved great success in various graph-related applications. Most existing graph neural network models follow the message-passing neural network (MPNN) paradigm where the graph pooling function forms a critical component that directly determines the model effectiveness. In this paper, we propose PermPool, a new graph pooling function that provably improves the GNN model expressiveness. The method is based on the insight that the distribution of node permuations, when defined properly, forms characteristic encoding of graphs. We propose to express graph representations as the expectation of node permutations with a general pooling function. We show that the graph representation remains invariant to node-reordering and has strong expressive power than MPNN models. In addition, we propose novel permutation modeling and sampling techniques that integrate PermPool into the differentiable neural network models. Empirical results show that our method outperformed other pooling methods in benchmark graph classification tasks.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Graph neural networks (GNN) have achieved great success in various graph-related applications. Most existing graph neural network models follow the message-passing neural network (MPNN) paradigm where the graph pooling function forms a critical component that directly determines the model effectiveness. In this paper, we propose PermPool, a new graph pooling function that provably improves the GNN model expressiveness. The method is based on the insight that the distribution of node permuations, when defined properly, forms characteristic encoding of graphs. We propose to express graph representations as the expectation of node permutations with a general pooling function. We show that the graph representation remains invariant to node-reordering and has strong expressive power than MPNN models. In addition, we propose novel permutation modeling and sampling techniques that integrate PermPool into the differentiable neural network models. Empirical results show that our method outperformed other pooling methods in benchmark graph classification tasks.
基于可学习置换池的图神经网络改进
图神经网络(GNN)在各种与图相关的应用中取得了巨大的成功。大多数现有的图神经网络模型都遵循消息传递神经网络(MPNN)范式,其中图池函数是直接决定模型有效性的关键组件。在本文中,我们提出了一个新的图池函数PermPool,它可以证明提高GNN模型的表达性。该方法是基于节点排列的分布,当定义正确时,形成图的特征编码的洞察力。我们提出用一般池化函数将图表示表示为节点排列的期望。我们证明了图表示对节点重排序保持不变性,并且比MPNN模型具有更强的表达能力。此外,我们提出了新的排列建模和采样技术,将PermPool集成到可微神经网络模型中。实验结果表明,我们的方法在基准图分类任务中优于其他池化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信