Full-resolution encoder-decoder networks with multi-scale feature fusion for human pose estimation

Jie Ou, Mingjian Chen, Hong Wu
{"title":"Full-resolution encoder-decoder networks with multi-scale feature fusion for human pose estimation","authors":"Jie Ou, Mingjian Chen, Hong Wu","doi":"10.1145/3444685.3446282","DOIUrl":null,"url":null,"abstract":"To achieve more accurate 2D human pose estimation, we extend the successful encoder-decoder network, simple baseline network (SBN), in three ways. To reduce the quantization errors caused by the large output stride size, two more decoder modules are appended to the end of the simple baseline network to get full output resolution. Then, the global context blocks (GCBs) are added to the encoder and decoder modules to enhance them with global context features. Furthermore, we propose a novel spatial-attention-based multi-scale feature collection and distribution module (SA-MFCD) to fuse and distribute multi-scale features to boost the pose estimation. Experimental results on the MS COCO dataset indicate that our network can remarkably improve the accuracy of human pose estimation over SBN, our network using ResNet34 as the backbone network can even achieve the same accuracy as SBN with ResNet152, and our networks can achieve superior results with big backbone networks.","PeriodicalId":119278,"journal":{"name":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3444685.3446282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To achieve more accurate 2D human pose estimation, we extend the successful encoder-decoder network, simple baseline network (SBN), in three ways. To reduce the quantization errors caused by the large output stride size, two more decoder modules are appended to the end of the simple baseline network to get full output resolution. Then, the global context blocks (GCBs) are added to the encoder and decoder modules to enhance them with global context features. Furthermore, we propose a novel spatial-attention-based multi-scale feature collection and distribution module (SA-MFCD) to fuse and distribute multi-scale features to boost the pose estimation. Experimental results on the MS COCO dataset indicate that our network can remarkably improve the accuracy of human pose estimation over SBN, our network using ResNet34 as the backbone network can even achieve the same accuracy as SBN with ResNet152, and our networks can achieve superior results with big backbone networks.
基于多尺度特征融合的全分辨率编码器-解码器网络
为了实现更精确的二维人体姿态估计,我们从三方面扩展了成功的编码器-解码器网络,简单基线网络(SBN)。为了减少由于输出步幅过大造成的量化误差,在简单基线网络的末端增加了两个解码器模块,以获得完整的输出分辨率。然后,将全局上下文块(global context block, gcb)添加到编码器和解码器模块中,使其具有全局上下文特性。此外,我们提出了一种新的基于空间注意力的多尺度特征收集和分布模块(SA-MFCD),用于融合和分布多尺度特征,以提高姿态估计的精度。MS COCO数据集上的实验结果表明,我们的网络可以显著提高SBN上人体姿态估计的精度,使用ResNet34作为骨干网的网络甚至可以达到与使用ResNet152的SBN相同的精度,并且我们的网络在大型骨干网上可以取得更好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信