Effect Analysis of Low-Level Hardware Faults on Neural Networks using Emulated Inference

F. Bahnsen, Vanessa Klebe, Goerschwin Fey
{"title":"Effect Analysis of Low-Level Hardware Faults on Neural Networks using Emulated Inference","authors":"F. Bahnsen, Vanessa Klebe, Goerschwin Fey","doi":"10.1109/MOCAST52088.2021.9493350","DOIUrl":null,"url":null,"abstract":"Artificial Neural Networks (ANN) are increasingly deployed in various applications and devices using hardware accelerators. However, faults in the processing hardware can affect the output of the ANN and, thus, the reliability of the application using it. Analyzing the effect of hardware faults on the application at design time is essential but non-trivial.We introduce a framework to emulate ANN inference on hardware resource descriptions under hardware faults. Hardware architecture, scheduling, and fault models are fully adaptable. An in-depth controlled experiment shows how hardware faults jeopardize any robustness guar-antees. Benchmark experiments on state-of-the-art ANN demonstrate the scalability of our framework.","PeriodicalId":146990,"journal":{"name":"2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MOCAST52088.2021.9493350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Artificial Neural Networks (ANN) are increasingly deployed in various applications and devices using hardware accelerators. However, faults in the processing hardware can affect the output of the ANN and, thus, the reliability of the application using it. Analyzing the effect of hardware faults on the application at design time is essential but non-trivial.We introduce a framework to emulate ANN inference on hardware resource descriptions under hardware faults. Hardware architecture, scheduling, and fault models are fully adaptable. An in-depth controlled experiment shows how hardware faults jeopardize any robustness guar-antees. Benchmark experiments on state-of-the-art ANN demonstrate the scalability of our framework.
基于仿真推理的低级硬件故障对神经网络的影响分析
人工神经网络(ANN)越来越多地应用于各种使用硬件加速器的应用和设备中。然而,处理硬件的故障会影响人工神经网络的输出,从而影响使用它的应用程序的可靠性。在设计时分析硬件故障对应用程序的影响是必要的,但不是微不足道的。我们引入了一个框架来模拟在硬件故障情况下对硬件资源描述的人工神经网络推理。硬件架构、调度和故障模型具有完全的适应性。一个深入的控制实验表明硬件故障是如何危及任何鲁棒性保证的。在最先进的人工神经网络上的基准实验证明了我们的框架的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信