A new algorithm for local background suppression in hyperspectral target detection

S. Matteoli, N. Acito, M. Diani, G. Corsini
{"title":"A new algorithm for local background suppression in hyperspectral target detection","authors":"S. Matteoli, N. Acito, M. Diani, G. Corsini","doi":"10.1109/WHISPERS.2010.5594906","DOIUrl":null,"url":null,"abstract":"This paper deals with target detection in hyperspectral images based on local background suppression. Global approaches to background subspace estimation and suppression may be ineffective for target detection purposes. In fact, they tend to overestimate the background interference affecting a specific target. This typically results in a low target residual energy after background suppression, which is detrimental to detection performance. In this work, a local methodology is investigated that estimates the local background subspace over a local neighborhood of each pixel. By acting on a per-pixel basis, the proposed method adaptively tailors the estimated basis to the local complexity of background and it is expected to yield a higher target residual energy after suppression, thus benefiting to detection performance. Real hyperspectral imagery is employed to show the detection performance improvement offered by this approach with respect to a conventional global methodology.","PeriodicalId":193944,"journal":{"name":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2010.5594906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper deals with target detection in hyperspectral images based on local background suppression. Global approaches to background subspace estimation and suppression may be ineffective for target detection purposes. In fact, they tend to overestimate the background interference affecting a specific target. This typically results in a low target residual energy after background suppression, which is detrimental to detection performance. In this work, a local methodology is investigated that estimates the local background subspace over a local neighborhood of each pixel. By acting on a per-pixel basis, the proposed method adaptively tailors the estimated basis to the local complexity of background and it is expected to yield a higher target residual energy after suppression, thus benefiting to detection performance. Real hyperspectral imagery is employed to show the detection performance improvement offered by this approach with respect to a conventional global methodology.
高光谱目标检测中一种新的局部背景抑制算法
本文研究了基于局部背景抑制的高光谱图像目标检测方法。背景子空间估计和抑制的全局方法对于目标检测可能是无效的。事实上,他们倾向于高估影响特定目标的背景干扰。这通常会导致背景抑制后的目标剩余能量较低,这不利于检测性能。在这项工作中,研究了一种局部方法,该方法在每个像素的局部邻域上估计局部背景子空间。该方法以像素为单位,根据背景的局部复杂度自适应地调整估计基,期望在抑制后产生更高的目标剩余能量,从而有利于提高检测性能。采用真实高光谱图像来显示该方法相对于传统全局方法提供的检测性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信