Evolutionary optimization of RBF networks

E. D. Lacerda, Teresa B Ludermir, A. Carvalho
{"title":"Evolutionary optimization of RBF networks","authors":"E. D. Lacerda, Teresa B Ludermir, A. Carvalho","doi":"10.1109/SBRN.2000.889742","DOIUrl":null,"url":null,"abstract":"One of the main obstacles to the widespread use of artificial neural networks is the difficulty of adequately defining values for their free parameters. The article discusses how radial basis function (RBF) networks can have their parameters defined by genetic algorithms. For such, it presents an overall view of the problems involved and the different approaches used to genetically optimize RBF networks. Finally, a model is proposed which includes representation, crossover operator and multiobjective optimization criteria. Experimental results using this model are presented.","PeriodicalId":448461,"journal":{"name":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","volume":"14 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2000.889742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

One of the main obstacles to the widespread use of artificial neural networks is the difficulty of adequately defining values for their free parameters. The article discusses how radial basis function (RBF) networks can have their parameters defined by genetic algorithms. For such, it presents an overall view of the problems involved and the different approaches used to genetically optimize RBF networks. Finally, a model is proposed which includes representation, crossover operator and multiobjective optimization criteria. Experimental results using this model are presented.
RBF网络的进化优化
人工神经网络广泛应用的主要障碍之一是难以充分定义其自由参数的值。本文讨论了径向基函数(RBF)网络如何用遗传算法定义其参数。因此,它提出了所涉及的问题和用于遗传优化RBF网络的不同方法的总体视图。最后,提出了一个包含表示、交叉算子和多目标优化准则的模型。最后给出了该模型的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信