Biophysical basis of neural memory

A. Radchenko
{"title":"Biophysical basis of neural memory","authors":"A. Radchenko","doi":"10.1109/IJCNN.1999.831448","DOIUrl":null,"url":null,"abstract":"The model of neural membrane describes interaction of gating charges (GC), their conformational mobility and immobilization during excitation. Volt-conformational and current-voltage characteristic (VCC and CVC) of the membrane are analytically derived. Inactivation is shown to change these characteristics during excitation; this is caused by GC immobilization, instead of the contrary. VCC and CVC have hysteretic properties. Due to them electroexcitable units of the somato-dendritic (SD) membrane arrange a memory medium well adapted to record, keep and reconstruct afferent information. GC immobilization underlies consolidation of memory traces. The theory of quasi-holographic associative memory is constructed where role of memory medium is carried out by synaptic addressed units of electroexcitable mosaics of SD-membranes. Small changes of membrane potential (slow potentials) select modes of such memory: if the working point on VCC is displaced inside the hysteretic loop, then the neuron is in writing mode, if outside then in a reading mode. Current distribution of slow potentials shares neuron population on writing, reading and intermediate sets (short-term memory), they are in relative dynamic (metabolic dependent) balance.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.831448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The model of neural membrane describes interaction of gating charges (GC), their conformational mobility and immobilization during excitation. Volt-conformational and current-voltage characteristic (VCC and CVC) of the membrane are analytically derived. Inactivation is shown to change these characteristics during excitation; this is caused by GC immobilization, instead of the contrary. VCC and CVC have hysteretic properties. Due to them electroexcitable units of the somato-dendritic (SD) membrane arrange a memory medium well adapted to record, keep and reconstruct afferent information. GC immobilization underlies consolidation of memory traces. The theory of quasi-holographic associative memory is constructed where role of memory medium is carried out by synaptic addressed units of electroexcitable mosaics of SD-membranes. Small changes of membrane potential (slow potentials) select modes of such memory: if the working point on VCC is displaced inside the hysteretic loop, then the neuron is in writing mode, if outside then in a reading mode. Current distribution of slow potentials shares neuron population on writing, reading and intermediate sets (short-term memory), they are in relative dynamic (metabolic dependent) balance.
神经记忆的生物物理基础
神经膜模型描述了门控电荷(GC)在激发过程中的相互作用、构象迁移和固定。对膜的电压-构象特性和电流-电压特性(VCC和CVC)进行了解析推导。在激发期间,失活会改变这些特性;这是由GC固定引起的,而不是相反。VCC和CVC具有滞回特性。由于它们,体树突(SD)膜的电兴奋单元安排了一种记忆介质,非常适合记录、保存和重建传入信息。GC固定是巩固内存轨迹的基础。建立了准全息联想记忆理论,其中记忆介质的作用是由sd膜的电兴奋嵌合的突触寻址单元完成的。膜电位(慢电位)的微小变化选择了这种记忆模式:如果VCC上的工作点在滞回环内移位,则神经元处于写入模式,如果在滞回环外则处于读取模式。当前慢电位分布在写、读和中间集(短期记忆)上共享神经元群,它们处于相对动态(代谢依赖)平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信