Visual AI Applications on Smart Delivery Units

Daniel Schoepflin, Özge Albayrak, Piet Scheffler, Arne Wendt, Martin Gomse, Thorsten Schüppstuhl
{"title":"Visual AI Applications on Smart Delivery Units","authors":"Daniel Schoepflin, Özge Albayrak, Piet Scheffler, Arne Wendt, Martin Gomse, Thorsten Schüppstuhl","doi":"10.1109/gcaiot53516.2021.9693060","DOIUrl":null,"url":null,"abstract":"As actors in an IoT production environment, smart delivery units are tasked with identifying loaded components and acquiring shopfloor events such as consumption of material. Conventional identification procedures rely heavily on tags and markers that are applied on components. For processes that require marker-less identification procedures, AI-based object identification can be incorporated. In this paper, we present a novel integration of such visual applications on smart delivery units. We address the main challenges of this approach, namely the need for computational resources and integration with low-cost components. Additionally, we propose a scalable IoT concept for the distribution of the AI functionalities on those delivery units by utilizing containerized applications. We demonstrate the validity of this AI integration with a real-world implementation on delivery units, tested in an application near environment.","PeriodicalId":169247,"journal":{"name":"2021 IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/gcaiot53516.2021.9693060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As actors in an IoT production environment, smart delivery units are tasked with identifying loaded components and acquiring shopfloor events such as consumption of material. Conventional identification procedures rely heavily on tags and markers that are applied on components. For processes that require marker-less identification procedures, AI-based object identification can be incorporated. In this paper, we present a novel integration of such visual applications on smart delivery units. We address the main challenges of this approach, namely the need for computational resources and integration with low-cost components. Additionally, we propose a scalable IoT concept for the distribution of the AI functionalities on those delivery units by utilizing containerized applications. We demonstrate the validity of this AI integration with a real-world implementation on delivery units, tested in an application near environment.
智能交付单元上的可视化AI应用
作为物联网生产环境中的参与者,智能交付单元的任务是识别已加载的组件并获取车间事件,如材料消耗。传统的识别程序严重依赖于应用在组件上的标签和标记。对于需要无标记识别程序的流程,可以合并基于人工智能的对象识别。在本文中,我们提出了这种视觉应用在智能交付单元上的新颖集成。我们解决了这种方法的主要挑战,即对计算资源的需求和与低成本组件的集成。此外,我们提出了一个可扩展的物联网概念,通过利用容器化应用程序在这些交付单元上分发AI功能。我们通过在交付单元上的实际实现证明了这种AI集成的有效性,并在应用程序附近的环境中进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信