Algorithms for the minimax transportation problem

R. Ahuja
{"title":"Algorithms for the minimax transportation problem","authors":"R. Ahuja","doi":"10.1002/NAV.3800330415","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a variant of the classical transportation problem as well as of the bottleneck transportation problem, which we call the minimax transportation problem. The problem considered is to determine a feasible flow xij from a set of origins I to a set of destinations J for which max(i,j)eIxJ{cijxij} is minimum. In this paper, we develop a parametric algorithm and a primal‐dual algorithm to solve this problem. The parametric algorithm solves a transportation problem with parametric upper bounds and the primal‐dual algorithm solves a sequence of related maximum flow problems. The primal‐dual algorithm is shown to be polynomially bounded. Numerical investigations with both the algorithms are described in detail. The primal‐dual algorithm is found to be computationally superior to the parametric algorithm and it can solve problems up to 1000 origins, 1000 destinations and 10,000 arcs in less than 1 minute on a DEC 10 computer system. The optimum solution of the minimax transportation problem may be noninteger. We also suggest a polynomial algorithm to convert this solution into an integer optimum solution.","PeriodicalId":431817,"journal":{"name":"Naval Research Logistics Quarterly","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1986-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naval Research Logistics Quarterly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/NAV.3800330415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

Abstract

In this paper, we consider a variant of the classical transportation problem as well as of the bottleneck transportation problem, which we call the minimax transportation problem. The problem considered is to determine a feasible flow xij from a set of origins I to a set of destinations J for which max(i,j)eIxJ{cijxij} is minimum. In this paper, we develop a parametric algorithm and a primal‐dual algorithm to solve this problem. The parametric algorithm solves a transportation problem with parametric upper bounds and the primal‐dual algorithm solves a sequence of related maximum flow problems. The primal‐dual algorithm is shown to be polynomially bounded. Numerical investigations with both the algorithms are described in detail. The primal‐dual algorithm is found to be computationally superior to the parametric algorithm and it can solve problems up to 1000 origins, 1000 destinations and 10,000 arcs in less than 1 minute on a DEC 10 computer system. The optimum solution of the minimax transportation problem may be noninteger. We also suggest a polynomial algorithm to convert this solution into an integer optimum solution.
极大极小运输问题的算法
在本文中,我们考虑了经典运输问题和瓶颈运输问题的一个变体,我们称之为极大极小运输问题。考虑的问题是确定从一组原点I到一组目的地J的可行流xij,其中max(I, J)eIxJ{cijxij}最小。在本文中,我们开发了一个参数算法和一个原始对偶算法来解决这个问题。参数算法解决了一个有参数上界的运输问题,原始对偶算法解决了一系列相关的最大流量问题。原始对偶算法被证明是多项式有界的。详细描述了这两种算法的数值研究。原始对偶算法在计算上优于参数算法,在DEC 10计算机系统上,它可以在不到1分钟的时间内解决多达1000个原点,1000个目的地和10,000个弧线的问题。极大极小运输问题的最优解可能是非整数的。我们还提出了一个多项式算法将该解转化为整数最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信