A connectionist inductive learning system for modal logic programming

A.S. d'Avila Garcez, L. Lamb, D. Gabbay
{"title":"A connectionist inductive learning system for modal logic programming","authors":"A.S. d'Avila Garcez, L. Lamb, D. Gabbay","doi":"10.1109/ICONIP.2002.1199022","DOIUrl":null,"url":null,"abstract":"Neural-Symbolic integration has become a very active research area in the last decade. In this paper, we present a new massively parallel model for modal logic. We do so by extending the language of Modal Prolog to allow modal operators in the head of the clauses. We then use an ensemble of C-IL/sup 2/p neural networks to encode the extended modal theory (and its relations), and show that the ensemble computes a fixpoint semantics of the extended theory. An immediate result of our approach is the ability to perform learning from examples efficiently using each network of the ensemble. Therefore, one can adapt the extended C-IL/sup 2/P system by training possible world representations.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1199022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Neural-Symbolic integration has become a very active research area in the last decade. In this paper, we present a new massively parallel model for modal logic. We do so by extending the language of Modal Prolog to allow modal operators in the head of the clauses. We then use an ensemble of C-IL/sup 2/p neural networks to encode the extended modal theory (and its relations), and show that the ensemble computes a fixpoint semantics of the extended theory. An immediate result of our approach is the ability to perform learning from examples efficiently using each network of the ensemble. Therefore, one can adapt the extended C-IL/sup 2/P system by training possible world representations.
模态逻辑规划的联结归纳学习系统
近十年来,神经符号集成已成为一个非常活跃的研究领域。本文提出了一种新的模态逻辑大规模并行模型。为此,我们扩展了Modal Prolog语言,允许在子句的头部使用模态操作符。然后,我们使用C-IL/sup 2/p神经网络集成对扩展模态理论(及其关系)进行编码,并证明该集成计算扩展理论的不动点语义。我们的方法的一个直接结果是能够有效地使用集成的每个网络从示例中进行学习。因此,可以通过训练可能的世界表示来适应扩展的C-IL/sup 2/P系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信