Graph Master Picture Theorem

R. Schwartz
{"title":"Graph Master Picture Theorem","authors":"R. Schwartz","doi":"10.2307/j.ctv5rf6tz.17","DOIUrl":null,"url":null,"abstract":"This chapter aims to prove Theorem 0.4, the Graph Master Picture Theorem. Theorem 0.4 is proven in two different ways, the first proof is discussed here; it deduces Theorem 0.4 from Theorem 13.2, which is a restatement of [S1, Master Picture Theorem] with minor cosmetic changes. The chapter is organized as follows. Section 13.2 discusses the special outer billiards orbits on kites. Section 13.3 defines the arithmetic graph, which is an arithmetical way of encoding the behavior of a certain first return map of the special orbits. Section 13.4 states Theorem 13.2, a slightly modified and simplified version of [S1, Master Picture Theorem]. Section 13.5 deduces Theorem 0.4 from Theorem 13.2 and one extra piece of information. Finally, Section 13.6 lists the polytopes comprising the partition associated to Theorems 13.2 and 0.4.","PeriodicalId":205299,"journal":{"name":"The Plaid Model","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plaid Model","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctv5rf6tz.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter aims to prove Theorem 0.4, the Graph Master Picture Theorem. Theorem 0.4 is proven in two different ways, the first proof is discussed here; it deduces Theorem 0.4 from Theorem 13.2, which is a restatement of [S1, Master Picture Theorem] with minor cosmetic changes. The chapter is organized as follows. Section 13.2 discusses the special outer billiards orbits on kites. Section 13.3 defines the arithmetic graph, which is an arithmetical way of encoding the behavior of a certain first return map of the special orbits. Section 13.4 states Theorem 13.2, a slightly modified and simplified version of [S1, Master Picture Theorem]. Section 13.5 deduces Theorem 0.4 from Theorem 13.2 and one extra piece of information. Finally, Section 13.6 lists the polytopes comprising the partition associated to Theorems 13.2 and 0.4.
图主图定理
本章的目的是证明定理0.4,图主图定理。定理0.4用两种不同的方式证明,这里讨论第一种证明;从定理13.2推导出定理0.4,定理13.2是对[S1,主图定理]的重述,做了一些修饰。本章组织如下。第13.2节讨论了风筝上特殊的外部台球轨道。第13.3节定义了算术图,算术图是对特殊轨道的某一首回图的行为进行算术编码的一种方法。第13.4节给出了定理13.2,这是对[S1,主图定理]的一个稍微修改和简化的版本。第13.5节从定理13.2和一个额外的信息推导出定理0.4。最后,第13.6节列出了包含与定理13.2和0.4相关的分区的多面体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信