The ocean and the atmosphere: An applied mathematician's view

R. S. Johnson
{"title":"The ocean and the atmosphere: An applied mathematician's view","authors":"R. S. Johnson","doi":"10.3934/cpaa.2022040","DOIUrl":null,"url":null,"abstract":"In this survey article, we provide a mathematical description of oceanic and atmospheric flows, based on the incompressible Navier–Stokes equation (for the ocean), and the compressible version with an equation of state and the first law of thermodynamics for the atmosphere. We show that, in both cases, the only fundamental assumption that we need to make is that of a thin shell on a (nearly) spherical Earth, so that the main elements of spherical geometry are included, with all other attributes of the fluid motion retained at leading order. (The small geometrical correction that is needed to represent the Earth's geoid as an oblate spheroid is briefly described.) We argue that this is the only reliable theoretical approach to these types of fluid problem. A generic formulation is presented for the ocean, and for the steady and unsteady atmosphere, these latter two differing slightly in the details. Based on these governing equations, a number of examples are presented (in outline only), some of which provide new insights into familiar flows. The examples include the Ekman flow and large gyres in the ocean; and in the atmosphere: Ekman flow, geostrophic balance, Brunt–Väisälä frequency, Hadley–Ferrel–polar cells, harmonic waves, equatorially trapped waves.","PeriodicalId":435074,"journal":{"name":"Communications on Pure & Applied Analysis","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure & Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2022040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this survey article, we provide a mathematical description of oceanic and atmospheric flows, based on the incompressible Navier–Stokes equation (for the ocean), and the compressible version with an equation of state and the first law of thermodynamics for the atmosphere. We show that, in both cases, the only fundamental assumption that we need to make is that of a thin shell on a (nearly) spherical Earth, so that the main elements of spherical geometry are included, with all other attributes of the fluid motion retained at leading order. (The small geometrical correction that is needed to represent the Earth's geoid as an oblate spheroid is briefly described.) We argue that this is the only reliable theoretical approach to these types of fluid problem. A generic formulation is presented for the ocean, and for the steady and unsteady atmosphere, these latter two differing slightly in the details. Based on these governing equations, a number of examples are presented (in outline only), some of which provide new insights into familiar flows. The examples include the Ekman flow and large gyres in the ocean; and in the atmosphere: Ekman flow, geostrophic balance, Brunt–Väisälä frequency, Hadley–Ferrel–polar cells, harmonic waves, equatorially trapped waves.
海洋与大气:一个应用数学家的观点
在这篇综述文章中,我们提供了海洋和大气流动的数学描述,基于不可压缩的Navier-Stokes方程(海洋)和大气的可压缩状态方程和热力学第一定律。我们表明,在这两种情况下,我们需要做的唯一基本假设是(接近)球形地球上的薄壳,以便包括球形几何的主要元素,而流体运动的所有其他属性保持在领先地位。(本文简要描述了将地球大地水准面表示为扁球体所需的微小几何校正。)我们认为这是解决这类流体问题的唯一可靠的理论方法。本文提出了一个适用于海洋以及稳定和不稳定大气的一般公式,后两者在细节上略有不同。基于这些控制方程,给出了许多示例(仅在大纲中),其中一些提供了对熟悉流程的新见解。这些例子包括埃克曼流和海洋中的大型环流;在大气中:埃克曼流,地转平衡,Brunt-Väisälä频率,哈德利-费雷尔极细胞,谐波,赤道俘获波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信