Estimation of the mechanical state variables of the two-mass system using fuzzy adaptive Kalman filter - Experimental study

Krzysztof Drozdz
{"title":"Estimation of the mechanical state variables of the two-mass system using fuzzy adaptive Kalman filter - Experimental study","authors":"Krzysztof Drozdz","doi":"10.1109/CYBConf.2015.7175977","DOIUrl":null,"url":null,"abstract":"This paper investigates the application of fuzzy adaptive Kalman Filter for mechanical state variable and parameter estimation of the drive system with elastic joint. The adaptive state-space controller, which coefficients are retuned according to the estimation parameter provided by Kalman filter, is selected to control the two-mass system effectively. Selected elements of covariance matrix Q are retuned by proposed adaptation law. Additional fuzzy element is used to modified the control law in order to decrease estimation error of the plant. The effectiveness of the proposed approach is investigated under variety of experimental tests.","PeriodicalId":177233,"journal":{"name":"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBConf.2015.7175977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper investigates the application of fuzzy adaptive Kalman Filter for mechanical state variable and parameter estimation of the drive system with elastic joint. The adaptive state-space controller, which coefficients are retuned according to the estimation parameter provided by Kalman filter, is selected to control the two-mass system effectively. Selected elements of covariance matrix Q are retuned by proposed adaptation law. Additional fuzzy element is used to modified the control law in order to decrease estimation error of the plant. The effectiveness of the proposed approach is investigated under variety of experimental tests.
用模糊自适应卡尔曼滤波估计双质量系统的力学状态变量——实验研究
研究了模糊自适应卡尔曼滤波在弹性关节驱动系统力学状态变量和参数估计中的应用。采用自适应状态空间控制器,根据卡尔曼滤波提供的估计参数返回系数,对双质量系统进行有效控制。根据所提出的自适应律返回协方差矩阵Q的选定元素。采用附加模糊元素对控制律进行修正,以减小被控对象的估计误差。通过各种实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信