A Fracture Mechanics Approach for Interface Durability of Bonded FRP to Concrete

J. Davalos, S. Kodkani, I. Ray, D. Boyajian
{"title":"A Fracture Mechanics Approach for Interface Durability of Bonded FRP to Concrete","authors":"J. Davalos, S. Kodkani, I. Ray, D. Boyajian","doi":"10.14359/14904","DOIUrl":null,"url":null,"abstract":"Synopsis: Externally bonded GFRP fabrics are being increasingly used for seismic retrofit and rehabilitation of concrete structures, due to their high strength to weight ratio and low cost in comparison to carbon and aramid fibers. However, glass fibers are vulnerable to attack caused by harsh environmental weathering conditions such as freezing-thawing, wetting-drying, and exposure to alkaline and acidic environments. Concerned with durability, this study is based on fracture mechanics to evaluate the interface durability of GFRP bonded to Normal Concrete (NC) and High-Performance Concrete (HPC). Three types of specimens are evaluated: (1) newly bonded unconditioned specimens, (2) environmentally conditioned specimens, and (3) correspondingly base-line companion specimens. Two types of environmental ageing protocols are defined: (1) freeze-thaw cycling under in calcium chloride, used to simulate the deleterious effect of the deicing salts; and (2) alternate wetting and drying in sodium-hydroxide, used to simulate the alkalinity due to the presence of concrete pore water. Durability of the interface is characterized based on the critical strain energy release rate, under Mode-I loading, and weight and strain measurements. Considerable degradation of the interface bond is observed with increasing environmental cycling period.","PeriodicalId":151616,"journal":{"name":"SP-230: 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SP-230: 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14359/14904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Synopsis: Externally bonded GFRP fabrics are being increasingly used for seismic retrofit and rehabilitation of concrete structures, due to their high strength to weight ratio and low cost in comparison to carbon and aramid fibers. However, glass fibers are vulnerable to attack caused by harsh environmental weathering conditions such as freezing-thawing, wetting-drying, and exposure to alkaline and acidic environments. Concerned with durability, this study is based on fracture mechanics to evaluate the interface durability of GFRP bonded to Normal Concrete (NC) and High-Performance Concrete (HPC). Three types of specimens are evaluated: (1) newly bonded unconditioned specimens, (2) environmentally conditioned specimens, and (3) correspondingly base-line companion specimens. Two types of environmental ageing protocols are defined: (1) freeze-thaw cycling under in calcium chloride, used to simulate the deleterious effect of the deicing salts; and (2) alternate wetting and drying in sodium-hydroxide, used to simulate the alkalinity due to the presence of concrete pore water. Durability of the interface is characterized based on the critical strain energy release rate, under Mode-I loading, and weight and strain measurements. Considerable degradation of the interface bond is observed with increasing environmental cycling period.
FRP与混凝土粘结界面耐久性的断裂力学研究
概要:与碳纤维和芳纶纤维相比,由于其高强度重量比和低成本,外部粘合GFRP织物越来越多地用于混凝土结构的抗震改造和修复。但是,玻璃纤维容易受到冻融、干湿、碱性和酸性等恶劣环境的侵蚀。在耐久性方面,本研究基于断裂力学对GFRP与普通混凝土(NC)和高性能混凝土(HPC)粘结的界面耐久性进行了评价。评估了三种类型的试件:(1)新粘结的无条件试件,(2)环境条件下的试件,以及(3)相应的基线伴随试件。定义了两种类型的环境老化方案:(1)氯化钙下的冻融循环,用于模拟除冰盐的有害影响;(2)在氢氧化钠中交替润湿和干燥,用于模拟由于混凝土孔隙水存在而产生的碱度。基于i型加载下的临界应变能释放率以及重量和应变测量来表征界面的耐久性。随着环境循环周期的增加,界面结合明显退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信