A BERT-based One-Pass Multi-Task Model for Clinical Temporal Relation Extraction

Chen Lin, Timothy A. Miller, Dmitriy Dligach, Farig Sadeque, Steven Bethard, G. Savova
{"title":"A BERT-based One-Pass Multi-Task Model for Clinical Temporal Relation Extraction","authors":"Chen Lin, Timothy A. Miller, Dmitriy Dligach, Farig Sadeque, Steven Bethard, G. Savova","doi":"10.18653/v1/2020.bionlp-1.7","DOIUrl":null,"url":null,"abstract":"Recently BERT has achieved a state-of-the-art performance in temporal relation extraction from clinical Electronic Medical Records text. However, the current approach is inefficient as it requires multiple passes through each input sequence. We extend a recently-proposed one-pass model for relation classification to a one-pass model for relation extraction. We augment this framework by introducing global embeddings to help with long-distance relation inference, and by multi-task learning to increase model performance and generalizability. Our proposed model produces results on par with the state-of-the-art in temporal relation extraction on the THYME corpus and is much “greener” in computational cost.","PeriodicalId":200974,"journal":{"name":"Workshop on Biomedical Natural Language Processing","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Biomedical Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.bionlp-1.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Recently BERT has achieved a state-of-the-art performance in temporal relation extraction from clinical Electronic Medical Records text. However, the current approach is inefficient as it requires multiple passes through each input sequence. We extend a recently-proposed one-pass model for relation classification to a one-pass model for relation extraction. We augment this framework by introducing global embeddings to help with long-distance relation inference, and by multi-task learning to increase model performance and generalizability. Our proposed model produces results on par with the state-of-the-art in temporal relation extraction on the THYME corpus and is much “greener” in computational cost.
基于bert的临床时间关系提取一遍多任务模型
最近,BERT在临床电子病历文本的时间关系提取方面取得了最先进的性能。然而,目前的方法效率很低,因为它需要多次遍历每个输入序列。我们将最近提出的一遍关系分类模型扩展为一遍关系提取模型。我们通过引入全局嵌入来帮助远程关系推理,并通过多任务学习来提高模型性能和泛化性来增强该框架。我们提出的模型产生的结果与THYME语料库上最先进的时间关系提取相当,并且在计算成本上更“环保”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信