Deep unfolding for hyper sharpening using a high-frequency injection module

J. Mifdal, Marc Tomás-Cruz, A. Sebastianelli, B. Coll, Joan Duran
{"title":"Deep unfolding for hyper sharpening using a high-frequency injection module","authors":"J. Mifdal, Marc Tomás-Cruz, A. Sebastianelli, B. Coll, Joan Duran","doi":"10.1109/CVPRW59228.2023.00204","DOIUrl":null,"url":null,"abstract":"The fusion of multi-source data with different spatial and spectral resolutions is a crucial task in many remote sensing and computer vision applications. Model-based fusion methods are more interpretable and. flexible than pure data-driven networks, but their performance depends greatly on the established fusion model and. the hand-crafted, prior. In this work, we propose an end-to-end trainable model-based. network for hyperspectral and panchromatic image fusion. We introduce an energy functional that takes into account classical observation models and. incorporates a high-frequency injection constraint. The resulting optimization function is solved by a forward-backward splitting algorithm and. unfolded into a deep-learning framework that uses two modules trained, in parallel to ensure both data observation fitting and constraint compliance. Extensive experiments are conducted, on the remote-sensing hyperspectral PRISMA dataset and on the CAVE dataset, proving the superiority of the proposed deep unfolding network qualitatively and quantitatively.","PeriodicalId":355438,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW59228.2023.00204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The fusion of multi-source data with different spatial and spectral resolutions is a crucial task in many remote sensing and computer vision applications. Model-based fusion methods are more interpretable and. flexible than pure data-driven networks, but their performance depends greatly on the established fusion model and. the hand-crafted, prior. In this work, we propose an end-to-end trainable model-based. network for hyperspectral and panchromatic image fusion. We introduce an energy functional that takes into account classical observation models and. incorporates a high-frequency injection constraint. The resulting optimization function is solved by a forward-backward splitting algorithm and. unfolded into a deep-learning framework that uses two modules trained, in parallel to ensure both data observation fitting and constraint compliance. Extensive experiments are conducted, on the remote-sensing hyperspectral PRISMA dataset and on the CAVE dataset, proving the superiority of the proposed deep unfolding network qualitatively and quantitatively.
使用高频注射模块进行超锐化的深度展开
在许多遥感和计算机视觉应用中,不同空间和光谱分辨率的多源数据融合是一项关键任务。基于模型的融合方法更具可解释性和可操作性。比纯数据驱动的网络灵活,但其性能在很大程度上取决于已建立的融合模型。手工制作,先验。在这项工作中,我们提出了一种基于端到端的可训练模型。用于高光谱和全色图像融合的网络。我们引入了一个能量泛函,它考虑了经典观测模型和。结合高频注入约束。得到的优化函数用正向向后分割算法求解。展开成一个深度学习框架,使用两个并行训练的模块,以确保数据观察拟合和约束遵从性。在遥感高光谱PRISMA数据集和CAVE数据集上进行了大量实验,从定性和定量上证明了所提出的深度展开网络的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信