{"title":"Applications of Port Hamiltonian Methods to Non-Iterative Stable Simulations of the KORG35 and MOOG 4-Pole VCF","authors":"M. Danish, S. Bilbao, M. Ducceschi","doi":"10.23919/DAFx51585.2021.9768301","DOIUrl":null,"url":null,"abstract":"This paper presents an application of the port Hamiltonian formalism to the nonlinear simulation of the OTA-based Korg35 filter circuit and the Moog 4-pole ladder filter circuit. Lyapunov analysis is used with their state-space representations to guarantee zero-input stability over the range of parameters consistent with the actual circuits. A zero-input stable non-iterative discrete-time scheme based on a discrete gradient and a change of state variables is shown along with numerical simulations. Simulations show behavior consistent with the actual operation of the circuits, e.g., self-oscillation, and are found to be stable and have lower computational cost compared to iterative methods.","PeriodicalId":221170,"journal":{"name":"2021 24th International Conference on Digital Audio Effects (DAFx)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 24th International Conference on Digital Audio Effects (DAFx)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DAFx51585.2021.9768301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents an application of the port Hamiltonian formalism to the nonlinear simulation of the OTA-based Korg35 filter circuit and the Moog 4-pole ladder filter circuit. Lyapunov analysis is used with their state-space representations to guarantee zero-input stability over the range of parameters consistent with the actual circuits. A zero-input stable non-iterative discrete-time scheme based on a discrete gradient and a change of state variables is shown along with numerical simulations. Simulations show behavior consistent with the actual operation of the circuits, e.g., self-oscillation, and are found to be stable and have lower computational cost compared to iterative methods.