The Impact of Uncle Rewards on Selfish Mining in Ethereum

Fabian Ritz, A. Zugenmaier
{"title":"The Impact of Uncle Rewards on Selfish Mining in Ethereum","authors":"Fabian Ritz, A. Zugenmaier","doi":"10.1109/EuroSPW.2018.00013","DOIUrl":null,"url":null,"abstract":"Many of today's crypto currencies use blockchains as decentralized ledgers and secure them with proof of work. In case of a fork of the chain, Bitcoin's rule for achieving consensus is selecting the longest chain and discarding the other chain as stale. It has been demonstrated that this consensus rule has a weakness against selfish mining in which the selfish miner exploits the variance in block generation by partially withholding blocks. In Ethereum, however, under certain conditions stale blocks don't have to be discarded but can be referenced from the main chain as uncle blocks yielding a partial reward. This concept limits the impact of network delays on the expected revenue for miners. But the concept also reduces the risk for a selfish miner to gain no rewards from withholding a freshly minted block. This paper uses a Monte Carlo simulation to quantify the effect of uncle blocks both to the profitability of selfish mining and the blockchain's security in Ethereum (ETH). A brief outlook about a recent Ethereum Classic (ETC) improvement proposal that weighs uncle blocks during the selection of the main chain will be given.","PeriodicalId":326280,"journal":{"name":"2018 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EuroSPW.2018.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

Abstract

Many of today's crypto currencies use blockchains as decentralized ledgers and secure them with proof of work. In case of a fork of the chain, Bitcoin's rule for achieving consensus is selecting the longest chain and discarding the other chain as stale. It has been demonstrated that this consensus rule has a weakness against selfish mining in which the selfish miner exploits the variance in block generation by partially withholding blocks. In Ethereum, however, under certain conditions stale blocks don't have to be discarded but can be referenced from the main chain as uncle blocks yielding a partial reward. This concept limits the impact of network delays on the expected revenue for miners. But the concept also reduces the risk for a selfish miner to gain no rewards from withholding a freshly minted block. This paper uses a Monte Carlo simulation to quantify the effect of uncle blocks both to the profitability of selfish mining and the blockchain's security in Ethereum (ETH). A brief outlook about a recent Ethereum Classic (ETC) improvement proposal that weighs uncle blocks during the selection of the main chain will be given.
大叔奖励对以太坊自私挖矿的影响
今天的许多加密货币使用区块链作为分散的分类账,并通过工作量证明来保护它们。在链分叉的情况下,比特币达成共识的规则是选择最长的链,并丢弃另一条过时的链。已经证明,这种共识规则对自私挖矿有一个弱点,在自私挖矿中,自私的矿工通过部分扣留区块来利用区块生成的方差。然而,在以太坊中,在某些条件下,陈旧的区块不必被丢弃,而是可以从主链中引用,作为产生部分奖励的大叔区块。这个概念限制了网络延迟对矿工预期收入的影响。但这个概念也降低了自私的矿工从扣留新挖出的区块中得不到奖励的风险。本文使用蒙特卡罗模拟来量化大叔块对自私采矿的盈利能力和以太坊(ETH)区块链安全性的影响。本文将简要介绍最近的以太坊经典(ETC)改进提案,该提案在选择主链时对叔块进行加权。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信