On fractional mean value theorems associated with Hadamard fractional calculus and application

Li Ma, Cheng Liu, R. Liu, Boheng Wang, Yixiang Zhu
{"title":"On fractional mean value theorems associated with Hadamard fractional calculus and application","authors":"Li Ma, Cheng Liu, R. Liu, Boheng Wang, Yixiang Zhu","doi":"10.7153/fdc-2020-10-14","DOIUrl":null,"url":null,"abstract":". This paper is mainly to establish generalized mean value theorems involved with left and right Hadamard fractional calculus. In light of suitable absolutely continuous spaces and auxiliary scaling function, the novel Taylor type mean value theorem and Cauchy type mean value theorem are demonstrated in the functional space generated by logarithmic basis, respec-tively. Additionally, several indispensable examples are given to verify the effectiveness of our theoretical results.","PeriodicalId":135809,"journal":{"name":"Fractional Differential Calculus","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Differential Calculus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/fdc-2020-10-14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

. This paper is mainly to establish generalized mean value theorems involved with left and right Hadamard fractional calculus. In light of suitable absolutely continuous spaces and auxiliary scaling function, the novel Taylor type mean value theorem and Cauchy type mean value theorem are demonstrated in the functional space generated by logarithmic basis, respec-tively. Additionally, several indispensable examples are given to verify the effectiveness of our theoretical results.
分数中值定理与阿达玛分数微积分的关系及其应用
. 本文主要建立涉及左右阿达玛分数阶微积分的广义中值定理。利用合适的绝对连续空间和辅助标度函数,分别在对数基生成的泛函空间中证明了新的Taylor型中值定理和Cauchy型中值定理。此外,还给出了几个必不可少的例子来验证我们的理论结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信