{"title":"A generation method for fuzzy rules using neural networks with planar lattice architecture","authors":"E. Tazaki, N. Inoue","doi":"10.1109/ICNN.1994.374419","DOIUrl":null,"url":null,"abstract":"In this paper, the authors first present a method for automated extraction of fuzzy rules using neural networks with a planar lattice architecture. The neural network is composed of three layers-input layer, hidden layer with a lattice architecture and output layer. In the hidden layer, the neurons are arranged in a lattice structure, with each neuron assigned a position in a lattice. Each neuron of the hidden layer is assigned a fuzzy proposition which composes a fuzzy rule. The network is learned structurally with generation/annihilation of neurons. After the rules learning process, one may extract simple fuzzy production rules from the network. Next, the authors extend the method to the cases of multi-dimensional rules. The authors apply the proposed method to generate the diagnostic rules for hernia of an intervertebral disc.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
In this paper, the authors first present a method for automated extraction of fuzzy rules using neural networks with a planar lattice architecture. The neural network is composed of three layers-input layer, hidden layer with a lattice architecture and output layer. In the hidden layer, the neurons are arranged in a lattice structure, with each neuron assigned a position in a lattice. Each neuron of the hidden layer is assigned a fuzzy proposition which composes a fuzzy rule. The network is learned structurally with generation/annihilation of neurons. After the rules learning process, one may extract simple fuzzy production rules from the network. Next, the authors extend the method to the cases of multi-dimensional rules. The authors apply the proposed method to generate the diagnostic rules for hernia of an intervertebral disc.<>