Detection and classification of cloud data from geostationary satellite using artificial neural networks

Ren-Jean Liou, M. Azimi-Sadjadi, D. Reinke, T. Vonderhaar, K. E. Eis
{"title":"Detection and classification of cloud data from geostationary satellite using artificial neural networks","authors":"Ren-Jean Liou, M. Azimi-Sadjadi, D. Reinke, T. Vonderhaar, K. E. Eis","doi":"10.1109/ICNN.1994.374963","DOIUrl":null,"url":null,"abstract":"This paper presents a neural network-based approach for the detection/classification of cloud field from satellite data in both the visible and infrared (IR) range. Unlike many existing cloud detection schemes which use thresholding and statistical methods, this approach uses singular value decomposition (SVD) to extract image textural features in addition to mean value methodologies. The extracted features are then presented to a self-organizing feature map or Kohonen network for automatic detection and classification of cloud areas. The effectiveness of this method is demonstrated under many situations which are considered difficult for the conventional methods. The proposed method also possesses some interesting classification capabilities which can facilitate future studies on global climatology.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents a neural network-based approach for the detection/classification of cloud field from satellite data in both the visible and infrared (IR) range. Unlike many existing cloud detection schemes which use thresholding and statistical methods, this approach uses singular value decomposition (SVD) to extract image textural features in addition to mean value methodologies. The extracted features are then presented to a self-organizing feature map or Kohonen network for automatic detection and classification of cloud areas. The effectiveness of this method is demonstrated under many situations which are considered difficult for the conventional methods. The proposed method also possesses some interesting classification capabilities which can facilitate future studies on global climatology.<>
基于人工神经网络的地球同步卫星云数据检测与分类
本文提出了一种基于神经网络的基于可见光和红外(IR)波段卫星数据的云场检测/分类方法。与现有的云检测方案使用阈值分割和统计方法不同,该方法在使用均值方法的基础上,采用奇异值分解(SVD)提取图像纹理特征。然后将提取的特征提交到自组织特征图或Kohonen网络中,用于云区的自动检测和分类。在许多常规方法难以解决的情况下,证明了该方法的有效性。该方法还具有一些有趣的分类能力,可以促进未来全球气候学的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信